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Abstract—We explore sampling-based sum-of-squares (SOS)
programming as a technique to verify the stability of non-
linear systems. We provide a review of Lyapunov analysis,
traditional SOS stability verification, and sampling-based SOS
verification, then apply these methods to two nonlinear sys-
tems. We demonstrate that sampling-based SOS verification
offers significant advantages over the traditional formulation
in terms of problem size and the amount of time required
to obtain a solution. The code for this project is available at
https://github.com/EpicDuckPotato/final project 16715.git.

I. INTRODUCTION

Deploying robots into dangerous environments and envi-
ronments with humans requires ensuring that their operation
is safe. One control-theoretic notion of safety is stability–the
property that within some range of operating conditions, the
robot can be trusted to track desired trajectories or drive itself
to a desired operating point. Recently, there has been a great
deal of work in verifying stability using sum-or-squares (SOS)
programming, which expresses Lyapunov stability conditions
as nonnegativity conditions for sets of polynomials [1]. A
problem with the traditional SOS approach is its scalabiltiy
to higher-dimensional systems, particularly due to its reliance
on high-degree Lagrange multiplier polynomials for repre-
senting constraints, leading to large semidefinite programs.
This is restrictive since there are many intriguing real-world
applications that are far larger than 10-15 states, such as
mechanical systems made up of several rigid bodies. Various
techniques have been used to address this problem, e.g. DSOS
and SDSOS programming [2].

In this project, we examine a recent sampling-based method
of SOS programming that addresses the scalability problem
[3], and compare it to the traditional SOS approach. In II, we
review Lyapunov stability analysis, traditional SOS verifica-
tion, and sampling-based SOS verification. In III, we apply
these methods to a Van der Pol oscillator and find that the
sampling-based method results in a faster, smaller optimization
problem. We also apply the sampling-based method to a N-
link cartpole. In IV, we discuss next steps.

II. METHODS

A. Lyapunov Stability Analysis
Suppose we have the following autonomous dynamical

system

ẋ = f(x) (1)

and want to verify the asymptotic stability of the origin x = 0.
These dynamics might represent the closed-loop dynamics of
a controller attempting to drive the system’s state to the origin.
Lyapunov analysis proceeds by searching for a Lyapunov
function V that satisfies the following two conditions:

V (x) ≻ 0 (2)

V̇ (x) ≺ 0 (3)

If such a function exists, then the origin x = 0 is asymptoti-
cally stable.

For many systems, however, the origin is only stable within
some region of attraction (ROA). In Lyapunov analysis, we
often write the ROA as the ρ-sublevel set of V , i.e. the origin
is stable only when V < ρ. Formally,

V (x) ≤ ρ =⇒ V̇ (x) ≺ 0 (4)

B. Stability Verification via Sum-of-Squares Programming
SOS stability analysis makes the assumption that V and

f are polynomial functions of x. In practice, we formulate
candidate Lyapunov functions V using the system’s total
energy or the value function of an LQR controller, which are
already polynomial. If the dynamics f are not polynomial, we
can approximate them as polynomial using a Taylor expansion.
With polynomial V and f , V̇ (x) = ∂V

∂x f(x) is a product of
polynomials, and thus also polynomial.

For simplicity, suppose we have a positive-definite V , which
means we only need to verify (3). With the assumption that
V̇ (x) is polynomial, a sufficient condition for (3) is that
−V̇ (x)− ϵx⊺x is a SOS polynomial, i.e.

−V̇ (x)− ϵx⊺x is SOS (5)

A polynomial P (x) is SOS if it can be written as a sum of
squared polynomials, i.e.

P (x) =
∑
i

gi(x)
2 (6)



for some polynomials gi(x). The sufficiency of (5) for (3) can
be seen using the following chain of implications, using the
fact that all SOS polynomials are non-negative.

−V̇ (x)− ϵx⊺x is SOS =⇒ −V̇ (x)− ϵx⊺x ≥ 0 (7)

=⇒ V̇ (x) ≤ −ϵx⊺x (8)

=⇒ V̇ (x) ≺ 0 (9)

Note that SOS verification is conservative, since (5) is a
sufficient condition for (3), not a necessary one.

We can verify regions of attraction using SOS programming
as well, which now requires verifying the implication (4). We
incorporate the implication into (5) using the S-procedure:

−V̇ (x)− ϵx⊺x− λ(x)(ρ− V (x)) is SOS (10)
λ(x) is SOS (11)

where λ is a Lagrange multiplier polynomial.
We solve an SOS program by transcribing it into a semi-

definite program (SDP). For example, the conditions (10) and
(11) correspond to the following SDP:

findQ⪰0,Qλ⪰0

−V̇ (x)−mλ(x)
⊺Qλmλ(x)(ρ− V (x)) = m(x)⊺Qm(x)

(12)
Here m(x) denotes the standard monomial basis of appro-

priate degree. The SDP is a convex optimization, and we solve
it using Mosek.

Note that the optimization in (10) and (11) is for a fixed
value of ρ–that is, it verifies a region of attraction. To find a
region of attraction, we perform a binary search over ρ values,
where we find the largest possible ρ such that the optimization
if feasible (see Algorithm 1).

C. Stability Verification via Sampling-based Sum-of-Squares
Programming

Beside the popular SOS programming formulation de-
scribed above, which is based on inequality implication (4), S-
procedure and multipliers, there is also an equality-constrained
formulation as follows:

max
ρ,Q⪰0,λ(x)

ρ

s.t. (x⊺x)
d
(V (x)− ρ)− λ(x)V̇ (x)

= m(x)⊺Qm(x),∀x
(13)

The SOS factorization constraint is written explicitly and
has a similar form as in (12). However, this formulation does
not require the multiplier λ to be SOS, nor does it require
the line-search for ROA in Algorithm 1, making the problem
simpler.

The (x⊺x)
d term, d ∈ R+, ensures that (13) does not always

return the trivial solution ρ = 0.
An important theorem to find ROA using the formulation

above is provided in [3] as follows
Theorem 1: Under the assumption that the Hessian of V̇ is

negative definite at the origin, the implication condition

V̇ (x) = 0⇒ V (x) ≥ ρ or x = 0 (14)

Algorithm 1: Binary search with SOS program.

Input : Candidate V , V̇ .
Output: ROA ρ.

1 initialize ϵ, degree of λ(x), initial and lower bound of
ρ, tolerance ε, max iter;

2 // Find upper bound of ρ
3 while is sos do
4 ρ← 2ρ;
5 is sos← check sos(Eq. (12));
6 end while
7 upper ← ρ;
8 while ∆ρ > ε or reach max iter do
9 is sos← check sos(Eq. (12));

10 if is sos then
11 lower ← ρ; // Increase ρ
12 else
13 upper ← ρ; // Decrease ρ
14 end if
15 ρ← lower+upper

2 ;
16 ρprev ← lower;
17 ∆ρ← ρ− ρprev;
18 end while
19 return ρ

is a sufficient condition for (4).

Define an algebraic variety as the set of solutions to a
set of polynomial equations. The number of equations in the
variety is the number of components. The core idea behind
sampling-based SOS verification is that instead of solving the
optimization problem for all real-valued x, we only solve it
at a set of numerical samples {xi} in the algebraic variety
V := {x|V̇ (x) = 0}.

max
ρ,Q≥0

ρ

s.t. V̇ (xi) = 0,∀xi

(x⊺
i xi)

d
(V (xi)− ρ) = m⊺ (xi)Qm (xi) ,∀xi

(15)

The sampled program (15) is equivalent to the original
program (13), if the samples {xi} are generic. Formally, the
genericity condition requires evaluating the basis monomial
vector m(xi) at each sample xi, then constructing the matrix
M with these monomial vectors as columns, i.e. for a set of p
samples, we would have M = [m(x1), . . .m(xp)]. Then we
check the rank of (MTM) ◦ (MTM), where ◦ denotes an
Hadamard (elementwise) product. If the matrix is full rank,
meaning the samples are unique, but the rank is less than
n(n+1)/2, where n is the dimension of the state x, then the
samples are not generic, and we need to obtain more samples.
Details about genericity-checking can be found in [5].

The genericity condition is very important as we need to
collect enough good samples or the ROA will be almost zero.



D. Sampling on Algebraic Varieties

Solving (15) requires sampling on an algebraic variety. We
implemented two methods for this.

The first method we implemented is valid for varieties with a
single component, i.e. a single equation. Suppose x ∈ Rn, and
we want to sample roots of V̇ (x) = 0. Then we sample two
vectors α, β ∈ Rn from a normal distribution, then construct
a univariate polynomial in a parameter t as follows:

x(t) = αt+ β (16)

V̇ (t) = V̇ (x(t)) = V̇ (αt+ β) (17)

We then find the roots of the univariate polynomial (17)
using numpy’s polyroots function, which finds roots as
the eigenvalues of a companion matrix. The procedure is
summarized in 2.

Algorithm 2: Sampling using Polyroots
Input : Scalar-valued function g : Rn → R, normal

distribution parameters µ ∈ Rn, Σ ∈ Rn×n,
upper bound xU , lower bound xL, tolerance ϵ

Output: Samples {x1, . . .xp}
1 α, β ∼ N (µ,Σ)
2 t1, . . . tm = polyroots(g(αt+ β))
3 S = ∅
4 for i ∈ [m] do
5 if Imag(ti) ≤ ϵ and xL ≤ αti + β ≤ xU then
6 S ← S ∪ {αti + β}
7 end if
8 end for
9 return S

The second method we implemented was Newton’s method
with an Armijo line search, which applies to varieties with
multiple components, e.g. the varieties defined in verification
problems with implicit dynamics, as described in II-E. We
obtain multiple samples by sampling multiple initial condi-
tions, then running Newton’s method to convergence. The
pseudocode for this method is shown in 3, where † indicates
the Moore-Penrose pseudoinverse.

A simplified description of the sampling-based SOS veri-
fication is shown in Algorithm 4. The sample variety func-
tion applies either 4 or 3 repeatedly to obtain new sam-
ples. The balancing V function balances the set by remov-
ing close instances which have approximately equal V . The
check genericity function applies the matrix rank test dis-
cussed earlier.

E. Verification of Implicit Dynamics

When equation (1) is applied to multibody dynamics, we
obtain the following non-polynomial dynamics:

v̇ = M(q)−1(τ(q,v)− b(q,v)) (18)

where q ∈ Q is the robot’s configuration and v ∈ TqQ
is the robot’s velocity, and τ(q,v) is the vector of applied
generalized forces. We assume that the applied forces are a

Algorithm 3: Sampling using Newton’s Method
Input : Vector-valued function g : Rn → Rm, m ≤ n,

normal distribution parameters µ ∈ Rn,
Σ ∈ Rn×n, tolerance ϵ, line search
parameters b

Output: Sample x ∈ Rn

1 x ∼ N (µ,Σ)
2 while 1

2∥g(x)∥
2 ≤ ϵ do

3 J = ∂g
∂x

4 ∆x = −J†g(x)
5 α = 1
6 while

1
2∥g(x+α∆x)∥2 > 1

2∥g(x)∥
2 + bαg(x)TJ∆x do

7 α← 1
2α

8 end while
9 x ← x+ α∆xend while

10 return x
11

Algorithm 4: Sampling-based SOS program.

Input : Candidate V , V̇ .
Output: ROA ρ.

1 initialize d;
2 // Find samples
3 enough sample← False;
4 S = ∅
5 while not enough sample do
6 // Use numpy polyroots or Newton’s

method
7 S ← S ∪ sample variety(V̇ );
8 S ← balancing V(S, V );
9 enough sample← check genericity(S);

10 end while
11 calculate (x⊺

i xi)
d
, V (xi),m(xi) for xi ∈ S

12 // Solve SDP with samples
13 ρ← solve(Eq. 15);
14 return ρ

function of q and v, e.g. via closed-loop control, to retain
autonomous dynamics.

One option to obtain polynomial dynamics is to simply
take the Taylor expansion of (18). Another option is to skip
the multiplication by the mass matrix, giving the familiar
manipulator equation

M(q)v̇ + b(q,v)) = τ(q,v) (19)

which represents the dynamics in implicit form.
In the case that we have revolute joints on the robot, q

traditionally contains joint angles θ, so the dynamics terms
M(q) and b(q,v) contain terms sin θ and cos θ, which are
not polynomial. However, if we modify our configuration
coordinates to contain variables c ≡ cos θ and s ≡ sin θ



instead of θ, with a constraint

c2 + s2 = 1 (20)

we obtain a configuration q′ and dynamics

M(q′)v̇ + b(q′,v)) = τ(q,v) (21)

The dynamics (21) are almost polynomial, apart from the
applied forces τ(q,v). For example, consider controlling a
one-link manipulator with q = θ ∈ R, driving θ and θ̇ to
zero, i.e.

τ(θ, θ̇) = −kpθ − kdθ̇ (22)

We now need to transform our controller to act on the
trigonometric configuration coordinates q′ = [c, s]. Using the
small angle approximation, s ≈ θ, we modify our controller
as follows:

τ(c, s, θ̇) = −kps− kdθ̇ (23)

Now the dynamics are polynomial:

M(q′)v̇ + b(q′,v)) = τ(q′,v) (24)

Now we need to verify the stability condition (5) every-
where that the equality constraints (24) and (20) hold, defining
x = [q′⊺,v⊺]⊺.

In the traditional SOS formulation, this corresponds to
adding additional multiplier polynomials, resulting in the
following SOS program:

−V̇ (x)− ϵx⊺x− λ(x)(ρ− V (x))− η(x)⊺e(x) is SOS
(25)

λ(x) is SOS
(26)

where η(x) is a vector of multiplier polynomials which need
not be SOS, and e(x) is the vector of equality constraints (24)
and (20) stacked together. With many equality constraints, the
program requires many multipliers, resulting in a large SDP.

In the sampling-based version, we simply add more equa-
tions to our algebraic variety, i.e.

max
ρ,Q≥0

ρ

s.t. V̇ (xi) = 0,∀xi

e (xi) = 0,∀xi

(x⊺
i xi)

d
(V (xi)− ρ) = m⊺ (xi)Qm (xi) ,∀xi

(27)
We sample on the variety using Newton’s method.

III. RESULTS

A. Verification of Van der Pol Oscillator

We verify both standard and sample-based methods derived
above by comparing solve time and ROA values compared to
ground truth which could be found by rolling out closed-loop
system simulations.

Van der Pol is a 2 state, degree 3 polynomial system. Its
time-reversed model is shown below

ẋ1 = −x2

ẋ2 = x1 + x2(x
2
1 − 1)

(28)

Fig. 1. Van der Pol simulation-based ROA approximation as ground truth.

We first simulate the system on an interesting grid for a
certain amount of time. In this way, stable states could be
found within some tolerances. The result from simulation-
based verification is described in Figure 1. Intuitively, if one
needs better quality ROA using simulation, the complexity
would increase exponentially with respect to problem di-
mension, grid size and converging time. This is why SDP
programs are preferred for this ROA application. While the
standard SOS program is not trivial to set up, the sampling-
based one is simpler but in need of an efficient sampling
method. The samples must be well-distributed, generic and not
close to zeros (trivial solution) to find a non-zero ROA. Both
programs are solved with Mosek using a degree 4 candidate
V , resulting in good approximations (Figure 2). If the degree
of the candidate V is increased, tighter ROA approximations
could be found.

V = 1.8027e−6 + 0.28557x2
1 + 0.0085754x4

1 + 0.18442x2
2

+0.016538x4
2 − 0.34562x2x1 + 0.064721x2x

3
1

+0.10556x2
2x

2
1 − 0.060367x3

2x1

(29)

Details of each program are provided in Table I. The
sampling-based SOS program is much smaller (less variables
and constraints) than the standard one. With the additional
sampling step, it is still 30 times and 100 times faster than
the others. This scenario may not show it but theoretically
the new approach could yield a more feasible SDP and less
conservative ROA. More experiments can be found in [3].

TABLE I
NUMERICAL COMPARISON OF THREE METHODS FOR ROA VERIFICATION

Van der Pol
Standard SOS Sampling SOS Simulation

num. scalarized var. 141 55 N/A
num. constraints 45 11 N/A

time (sec) 1.04 0.034 4.51
RoA ρ 0.999756 1.009835 1.260139



Fig. 2. Van der Pol ROA approximations. Both programs produce qualitatively
similar results.

B. Verification of N-Link Cartpole

We applied sampling-based SOS verification to an N-link
cartpole, using the implicit dynamics representation described
in II-E. The configuration of the cartpole consists of the
position of the cart p ∈ R, then the joint angles θi ∈ R,
i ∈ [N ].

q =


p
θ1
...
θN

 ∈ R1+N (30)

We make the trigonometric substitution ci ≡ cos θi, si ≡
sin θi. Our transformed configuration is

q′ =



p
c1
s1
...
cN
sN


∈ R1+2N (31)

and we have the following constraint for all i ∈ [N ]:

c2i + s2i = 1 (32)

We assume that the cart, as well as all joints, except for the
N th joint, are actuated, linearize the dynamics in the original
coordinates, and design an infinite-horizon LQR controller
τ(q,v) to drive the full cartpole state, consisting of config-
uration and velocity, to zero. The trajectory induced by the
controller from a perturbed initial condition, in the plane of
the cart position and joint angle (N = 1 here), is shown in
3. We then make the small-angle approximation si ≈ θi to
obtain a controller in the trigonometric coordinates: τ(q′,v).

We defined our Lyapunov function as the LQR value
function, or cost-to-go, which is quadratic in the state x. We
then solved (27), and obtained a ρ of about 1.7, for N = 1.
We also tried implementing the traditional verification (25),
but did not finish debugging.

Fig. 3. Cartpole regulation to origin, shown in plane of cart position and joint
angle

IV. CONCLUSION

In this project, we compared a recent sampling-based variant
of SOS stability verification to a more traditional form of
SOS stability verification, applied to a Van der Pol oscillator.
Ground truth for the system was found by using simulation-
based method. We found that the sampling-based variant
produced a smaller program and took less time to solve.
It may also provide less conservative ROA compared with
the standard approach. We also applied sampling-based SOS
verification to an N-link cartpole. Future directions of research
include applying the sampling-based verification to higher-
dimensional systems. In particular, systems with contacts
would be an interesting application, since they require many
multipliers with the traditional SOS formulation [4], creating
large SOS programs.
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