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Abstract

The control of dynamic-legged locomotion poses a significant challenge due to
the under-actuation of the system and the uncertainty inherent in the external
environment. In this project, we implemented a control framework based on
nonlinear model predictive control (NMPC) to enable the dynamic walking of a
quadruped robot. The final deliverable is a controller that can control the ANYmal
robot in simulation to walk steadily on flat ground with a trotting gait using the
OCS2 toolbox and the sequential quadratic programming (SQP) solver. To achieve
this, we solved the optimization problem using real-time iteration, filter-based line
search, and constraint projection. Our results indicate that the solver is sensitive to
the initial guess of states and is able to find a local minimum that is very close to
the global minimum, as validated based on physics.

1 Introduction

Control of highly dynamic legged robots has been a challenging problem due to the under-actuation of
the body during many gaits and constraints placed on the ground reaction forces. For example, during
dynamic gaits such as trotting, the body of the robot is always under-actuated. Additionally, ground
reaction forces must always remain in a friction cone to avoid slipping. With certain assumptions
made on the base’s orientation and angular velocity, the planning problem for legged robots can be
formulated as a convex optimization problem [1], which can be solved within a Model Predictive
Control (MPC) scheme [2].

The main advantage of MPC is the fact that it allows the current timeslot to be optimized while
keeping future timeslots into account. MPC has been widely used in the control of quadruped robots.
To generate discrete control policies, MPC solves a constrained trajectory optimization problem
at each time stamp to minimize some objective function, typically a quadratic cost of tracking a
reference state trajectory. The output of the trajectory optimization will be a sequence of control
inputs(preview capabilities), and we take the first one of this sequence as the real control input.

The method of this project is structured similarly to Fig. 1 [3]. A typical MPC-based legged
locomotion control architecture contains an MPC controller, a whole-body controller, and a state
estimator. MPC finds the optimal ground reaction force based on the user input, and then the whole-
body controller finds the desired joint torques based on the solution of MPC. The state estimator
keeps updating the current state of the robot and feeds it to the other two parts.

The core of this architecture is the continuous solution of an NMPC problem. To accomplish this, we
first discretize the original continuous-time problem into a nonlinear programming (NLP) problem,
which is then solved using a sequential quadratic programming (SQP) algorithm. Our trajectory
optimization problem is formulated to find the control inputs that enable a walking quadruped robot.
The decision variables for this optimization problem include the trajectory of the robot’s state and
the control inputs in the horizon. The control inputs are set to be the ground reaction force on each



foot and the velocity of the joints. Our goal is to determine the motion of the robot using the ground
reaction forces, as these are the only external forces acting on the quadruped robot system. At the
same time, by controlling the velocity of the foot, we can ensure a smooth swing and touchdown
behavior. Furthermore, we employ a range of equality and inequality constraints to ensure that
the robot’s behavior satisfies the specified gait and avoids foot-slip. To ensure that the quadratic
programming (QP) subproblem in each SQP iteration is convex, we use a quadratic approximation to
obtain a positive semi-definite Hessian. Additionally, constraint projection is employed to eliminate
equality constraints and improve computational performance. Our results indicate that the solver is
sensitive to the initial guess of states and may break for a poor initial guess.

Figure 1: MPC-based Legged Robots Controller Architecture [3].

2 Problem Statement

Basic quadruped locomotion is driven by tracking a predefined trajectory of states and control inputs
which are generated from a fixed gait schedule. Our overall optimization problem is to minimize
both the state tracking error and control input tracking error of the robot. This naturally forms a
multi-objective problem which is commonly handled via a weighted sum approach. In the MPC
framework, at each time stamp, a constrained trajectory optimization is quickly solved to obtain the
control signal (see Fig. 2). In this course project, we will mainly focus on how to solve this problem
at one MPC step and analyse the results.

Figure 2: MPC framework for optimal control problem [4].
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Figure 3: Simplified diagram of a quadruped robot.

The general formulation of the optimal control problem can be given by:

minimize Φ(s(T )) +

∫ T

0

l(s(τ),u(τ), τ)dτ tracking cost

with respect to

s(t) : R→ R24 robot state

u(t) : R→ R24 control input
subject to

s(0)− ŝ = 0 initial condition
ṡ(t)− f (s(t),u(t)) = 0 robot dynamics
h(s,u) = 0 foot constraint

gj
i (s,u) ≤ 0, i = 1, . . . , 4 bounds on decision variables

gF
i (u) ≤ 0, i ∈ C friction constraint

where
described in details in next sections

(1)

2.1 Robot Dynamics

The quadruped robot can be modeled as a set of four fully actuated limbs attached to an unactuated
3D rigid body (as in Fig. 3) Each limb has three joints that can be controlled. The following equations
can represent the dynamics of this system: [5]

Mu(qj)v̇j + bu(qj ,vj) = JT
cu(qj)Fc

Ma(qj)v̇j + ba(qj ,vj) = τj + JT
ca(qj)Fc

(2)

with qj ∈ R12 and vj ∈ R12 are generalized (joint) coordinates and velocities respectively. M is the
generalized mass matrix, b represents the nonlinear components including Coriolis, centrifugal, and
gravitational terms, and τj is the vector of joint torques. Jc is a matrix of stacked contact Jacobians,
while Fc is a vector of stacked contact wrenches. The subscripts u and a are associated with the
un-actuated and actuated parts of the defined quantities.

From the above equation, we may assume that we have sufficient control authority in the robot’s
joints. With proper transformation, we can derive the centroidal dynamics as:

ḣcom =

[ ∑4
i=1 fci +mg∑4

i=1 rcom,ci × fci + τci

]
(3)

where hcom ∈ R6 is a combination of linear momentum and angular momentum of the center of
mass. rcom,ci represents the position of the contact point ci (used interchangeably as i) with respect
to the center of mass. Contact forces and torques are denoted as fci ∈ R3 and τci ∈ R3.
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The base pose movement with respect to inertia frame could be achieved through centroidal momen-
tum matrix (CMM) [6]:

q̇b = A−1
b (hcom −Ajq̇j) (4)

where qb ∈ R6 is the base pose (position and orientation) with respect to the inertial frame. Since
we consider point contact instead of patch contact, contact torques can be neglected here. Therefore
we can represent our system with state vector s = [h⊺

com,q⊺
b ,q

⊺
j ]

⊺ ∈ R24 and input vector
u = [f⊺c1 , f

⊺
c2 , f

⊺
c3 , f

⊺
c4 ,v

⊺
j ]

⊺ ∈ R24, where q̇j = vj .

The initial condition in (1) constrains the state at time stamp zero of the optimization problem as the
current state feedback of the robot.

Finally, full system dynamics in (1) can be set up by collecting (3) and (4) together:

ṡ(t)− f (s(t),u(t)) = 0 (5)

In fact, we did not use these derivations for implementation, instead, we used Pinocchio [7] to
generate fast forward and inverse dynamics from robot configuration. However, the above derivations
provide a better understanding on the robot configuration and variable definition.

2.2 Objective Function

The modes and their switching times are assumed to be fixed in our project, hence the notations
dependent on them can be simplified. From this, the reference state and input vector can be denoted
as sREF (t) and uREF (t), leading to:

∆s = sREF − s

∆u = uREF − u

To form the objective function, we use a weighted sum of multiple cost functions which are the
quadratic tracking errors of states and inputs. They are evaluated within the whole MPC horizon T as

l(s(t),u(t), t) =
1

2
∆s(t)⊺Q∆s(t) +

1

2
∆u(t)⊺R∆u(t) (6)

Φ(s) =
1

2
∆s(T )⊺Q∆s(T ) (7)

where Q and R are positive definite weighting matrices. These quadratic functions are convex. In
the quadruped robot walking problem, we can make the terminal cost and the stage cost the same.
Because in walking MPC, the final state is nothing special and we do not really have a final goal.

2.3 Foot Equality Constraints

In our problem, we assume that a particular gait cycle is predefined within a set of contact switching
times. We want to ensure that the expected touch-down takes place according to the switching
schedule. Therefore, all equality constraints are posed at potential contact points, which could be
active or inactive. Let us define the set of all active foot contacts by C. At a fixed mode instance Cj
which lasts from time t0j to tfj , the corresponding (foot) state-input equality constraints hj(s,u, t)
can be expressed as below:

∀t ∈ [t0j , t
f
j ] and ∀i ∈ {1, . . . , 4}

vci = 0 if ci ∈ Cj (8a)

vci · n̂− vREF (t) = 0 if ci ∈ Cj (8b)

fci = 0 if ci ∈ Cj , (8c)

where vci is the linear velocity of contact point ci expressed in the inertial frame and vci = Jj,ivj .
This set of constraints (8) has the following meanings:

• The foot of a stance leg should stay fixed on the ground (8a);
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Figure 4: Illustration of a friction cone.

• All swing legs should track a reference trajectory vREF (t) along the surface normal n̂ (8b),
leaving the remaining orthogonal directions – which determine the stride-length – free for
the planner to resolve.

• For each foot in swing phase, the contact forces are zero (8c).

Equation (8b) implies that the foot lifts off and touches down with a desired velocity while the planner
has the freedom of foot placement (stride length) in the tangential direction.

2.4 Inequality Constraints

To guarantee that our planner produces dynamically feasible trajectories and forces that would also
respect the system’s inherent operating limits, the following friction constraint is introduced (see
Fig. 4):

∀t ∈ [t0j , t
f
j ] and ∀i ∈ {1, . . . , 4}

gFi (u) =
√
fX
ci

2
+ fY

ci
2
+ ϵ− µcf

Z
ci ≤ 0, ci ∈ Cj (9)

where fci = [fX
ci , f

Y
ci , f

Z
ci ]

⊺. This inequality guarantees the foot contact forces remain inside the
friction cone with friction coefficient µs and ϵ ̸= 0 a parameter that ensures a continuous derivative
at fci = 0, and at the same time provides a safety margin [8].

Additionally, we have simple bounds for decision variables, shown in Table 1. These boundaries
ensure that the robot’s joints do not exceed the limits of position, velocity and torque, while ensuring
that the robot is not broken by excessive ground reaction forces.

gj
i (x) =


qj − qUB

j

qLB
j − qj

vj − vUB
j

vLB
j − vj

fci − fUB
ci

fLB
ci − fci

 ≤ 0 (10)

2.5 Whole-body Controller

This section serves as the description of the low-level architecture for the quadruped locomotion, not
for the optimization problem.

The whole-body controller computes the desired joint torques based on the solution from whole-body
planner. In our project, we plan to divide the whole-body control into ground force control and swing
leg control.

During ground force control, joint torques are computed with

τi = JT
j,iR

T
i fci (11)
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Table 1: Bounds on decision variables.

Description Value Unit
ground reaction force max 10mg N
ground reaction force min 0 N
hip joint position max 46 deg
hip joint position min -46 deg
thigh joint position max 240 deg
thigh joint position min -60 deg
calf joint position max -52.5 deg
calf joint position min -154.5 deg
joint velocity max 21 deg/s
joint torque max 33.5 N.m

where R is the rotation matrix which transforms from body to world coordinates, J ∈ R3×3 is the
foot contact Jacobian, and fci is the vector of ground reaction forces calculated from the model
predictive controller described above. The whole-body controller will be implemented as a separate
thread to ensure stable control.

We also propose to use a PD controller to compute joint torques for tracking the optimized swing
trajectory in the NMPC solution for each foot. The full controller for tracking swing trajectories is

τi = Kp(q
MPC
j − qj) +Kd(v

MPC
j − vj) (12)

where Kp and Kd are diagonal matrices of proportional and derivative gains, qMPC
j and vMPC

j are
joints position and velocity in the NMPC solution, and qj and vj are current joint state.

3 Analysis of Problem Statement

The original continuous-time problem is discretized to get a solvable NLP in next sections, in
which the decision variables contain the state trajectory X ∈ R24N and control input trajectory
U ∈ R24(N−1) of the robot, where N is the MPC horizon length. The objective function is quadratic,
which is continuous and smooth. We also use a fixed time step to discretize the original problem.
These makes solving the problem much easier.

As we stated in the previous sections, we have a total of three equality constraints, and one inequality
constraint for each knot point in the trajectory. The inequality constraint can make sure that the
optimal ground reaction forces stay in the nonlinear friction cone, and the ϵ used to smooth the
function make it a practical constraint. The other three constraints result from the walking gait
requirement, which are practical constraints. The standing feet should have no motion, and the swing
feet shouldn’t have ground reaction forces. We also want the z-axis position of the swinging foot to
satisfy the generated swing curve. All these constraints are continuous and smooth.

Our discrete NMPC problem is an NLP problem, due to nonlinear objective function and constraints.
However, the problem is not convex because equation (8b) is nonlinear. This implies that there may
be multiple local optima. In practice, however, we do not really care much whether we can find the
global optimum. First, the behavior of the robot will not become outrageous under these constraints.
Then, we will make the solution as close as possible to the previous one by warm-starting it, that is
using the last solution as the initial guess, to ensure that the change of control input is not too radical.

In NMPC, the horizon length N , and the weight matrices Q and R are very important. They can
significantly affect the final solution. Here, we will determine the parameters mainly by manual
tuning.

4 Optimization Study

4.1 Numerical Method

To convert the continuous optimum control issue into a finite-dimensional nonlinear program, we
take a direct multiple-shooting strategy (NLP). The subsequent occurrences of the (1) are similar
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because MPC computes control inputs across a receding horizon, and when using a SQP technique,
the prior solution may be shifted to effectively warm-start the problem. We replicate the end state
of the prior solution and initialize the inputs with the references generated for new portions of the
shifted horizon for which there is no initial guess.

As an overview of the approach described in the following sections, a pseudo-code is provided in the
Algorithm below, referring to the relevant equations used at each MPC step. The QP is solved using
HPIPM, which will be concisely described later.

Algorithm:
1. Given: previous solution xi

2. Discretize the continuous problem
3. Compute the linear quadratic approximation
4. Compute the equality constraint projection
5. δx̃←− Solve the projected QP subproblem
6. δx←− Pδx̃+ p, back substitution
7. xi+1 ←− Line-Search(xi, δx),

4.1.1 Discretization

The general nonlinear MPC problem presented below can be formulated by defining and evaluating a
cost function and constraints on the grid of nodes.

The continuous signal s(t) and u(t) is parameterized over sub-intervals of the prediction horizon
[t, t+ T ] to obtain a finite-dimensional decision problem. This creates a grid of nodes k ∈ {0, ..., N}
defining control times tk separated by intervals of constant duration dt ≈ T/(N − 1).

Denoting sk = s(tk) and integrating the continuous dynamics (5) over and interval leads to a discrete
time representation of the dynamics:

sk+1 = sk +

∫ tk+1

tk

f(s(t),u(t))dt, s(tk) = sk. (13)

This equation can be numerically approximated through RK4 [9]. Given 5, 13, uk and dt, we get:

ṡ(t) = f (s(t),u(t))

k1 = f (sk,uk)

k2 = f

(
sk +

k1

2
dt,uk

)
k3 = f

(
sk +

k2

2
dt,uk

)
k4 = f (sk + k3dt,uk)

⇒sk+1 = fdk (sk,uk) = sk +
dt

6
(k1 + 2k2 + 2k3 + k4)

(14)

Figure 5: Plot of a relaxed barrier function.

RK4 is applied at each time step for the dynamics constraint function. The other variables, objective
function, and constraints are simply discretized into discrete counterparts. We then obtain the
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following discretized problem:

minimize
1

2
(sN − sREF

N )⊺Q(sN − sREF
N ) +

N−1∑
k=0

ld(sk,uk)

w.r.t x = [s⊺0 , s
⊺
1 , . . . , s

⊺
N ,u⊺

0 ,u
⊺
1 , . . . ,u

⊺
N−1]

⊺

s.t. gj
i (x) ≤ 0, i = 1, . . . , 4

gF
i (x) ≤ 0, i ∈ C

s0 = ŝ

sk+1 = fdk (sk,uk)

hk(sk,uk) = 0

where ld(sk,uk) =
1

2
(sk − sREF

k )⊺Q(sk − sREF
k ) +

1

2
(uk − uREF

k )⊺R(uk − uREF
k )

(15)

4.1.2 Relaxed Barrier Functions

This problem is highly dimensional, at each time step we have to calculate a batch of constraints, and
using the active set method to deal with inequality constraints is complicated. Moreover, it is possible
to prove the stability of the MPC framework with the relaxed barrier function [10]. Therefore, all
inequality constraints were handled through the penalty cost. We used relaxed barrier functions in
this project (see Fig. 5). This penalty function was defined as a log-barrier on the interior of the
feasible space and switches to a quadratic function at a distance δ from the constraint boundary

B(z) =


− µ ln (z), z ≥ δ

µ

2

((
z − 2δ

δ

)2

− 1

)
− µ ln (δ), z < δ

(16)

where µ > 0, 0 < δ ≤ 1. Both functions are strictly convex and strictly decreasing on their domains.
Thus, if g : R→ R is a strictly convex proper function, the function B(−g(x, u)) is also a strictly
convex proper function on R.

The related penalty is taken element-wise for vector-valued inequality constraints. The sum of all
penalty functions are added to the running cost to form a new objective function:

ϕ(x) =
1

2
(sN−sREF

N )⊺Q(sN−sREF
N )+

N−1∑
k=0

(
ld(sk,uk)+

4∑
i=1

Bj(−gj
i )+

∑
i∈C

BF (−gF
i )
)

(17)

One potential limitation of the proposed objective function is the possibility of violating inequality
constraints. As demonstrated in Figure 6, the optimal joint velocities for the knee joints of each leg
were found to be greater than zero. However, selecting an appropriate value for the hyperparameter
µ can help mitigate this issue. Empirically, a value of µ = 1 has been shown to be effective in
minimizing the impact of this potential limitation.

4.1.3 Sequential Quadratic Program

The new decision variable is a collection of all state and input within the horizon, x, problem (15)
can be written as a general NLP:

min
x

ϕ(x), (18a)

s.t. F(x) = 0 (18b)
H(x) = 0 (18c)

where ϕ(x) is the objective function, F(x) includes initial state and dynamics constraints, and H(x)
includes all foot equality constraints for all horizon steps.
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From the Karush-Kuhn-Tucker (KKT) optimality conditions, SQP-based methods apply Newton-type
iterations to solve that linear KKT equations while assuming some regularity conditions on the
constraints. Let’s define the Lagrangian of the NLP in (18) as:

L (x,λF,λH) = ϕ(x) + λ⊺
FF(x) + λ⊺

HH(x) (19)

with Lagrange multipliers λF and λH, corresponding to the dynamics and equality constraints.
Solving the KKT equations is equivalent to solving the following potentially non-convex QP:

min
δx

∇xϕ (xi)
⊺
δx+

1

2
δx⊺Biδx (20a)

s.t F (xi) +∇xF (xi)
⊺
δx = 0 (20b)

H (xi) +∇xH (xi)
⊺
δx = 0 (20c)

where the decision variable, δx = x− xi, determines the update step relative to the current iteration
xi, and the Hessian Bi = ∇2

xL (xi,λF,λH). The solution to (20) results in a candidate decision
variable update, δxi, and updated Lagrange multipliers.

4.1.4 Quadratic Approximation

As we seek to deploy MPC on dynamic robotic platforms, we do not want the optimization problem
provide any difficulty to the numerical solver. In this case, we want Bi to be semi-definite to make
the resulting QP convex. Hence, we use an approximation of Hessian instead. For tracking error of
each foot, initially we have:

ϵi =


qi − qREF

i

q̇i − q̇REF
i

pi − pREF
i

vi − vREF
i

fi − fREF
i

 (21)

as pi and vi are the foot position and velocity in world frame.

With Generalized Gauss-Newton approximation [11] (Xi is a weight matrix):

∇2
x

(
1

2
ϵi(x)

⊺Xiϵi(x)

)
≈ ∇xϵi(x)

⊺Xi∇xϵi(x) (22)

Similarly, by exploiting the convexity for penalty function:
∇2

x(B(g(x))) ≈ ∇xg(x)
⊺∇2

gB(g(x))∇xg(x) (23)

where∇2
gB(g(x)) maintains the curvature information of the convex penalty function.

4.1.5 Constraint Projection

The equality constraints in section 2.3 were chosen carefully to have a full-row rank with respect to
control inputs. This will allow us to eliminate equality constraints, before solving the QP through a
change of variables.

δx = Pδx̃+ p (24)

for which linear transformation satisfies,
∇xH (xi)

⊺
P = 0, ∇xH (xi)

⊺
p = −H (xi) (25)

Hence, after substituting (24) in (20), the following QP is solved w.r.t. δx̃

min
δx̃

∇x̃ϕ̃ (xi)
⊺
δx̃+

1

2
δx̃⊺B̃iδx̃ (26a)

s.t F̃ (x̃i) +∇x̃F̃ (xi)
⊺
δx̃ = 0 (26b)

This projected problem now only contains costs and system dynamics but has stage-wise structure,
hence solving the QP only requires Ricatti iteration via HPIPM, the Riccati-based interior-point
method solver we use, which has been tailored to exploit the particular structure of the obtained QP.

After obtaining the solution to (26), we can back-substitute that to (24) to achieve the original variable.
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Figure 6: The solutions in stance mode

4.1.6 HPIPM

HPIPM is a high-performance framework for quadratic programming (QP) that provides the building
blocks necessary to effectively and consistently handle model predictive control problems. Currently,
HPIPM supports three different QP types and offers (partial) condensing procedures and interior point
method (IPM) solvers. It should be noted that other equality constraints (such as the constraint on the
initial state value x(0) = x̂) must be restated as inequality constraints with equal upper and lower
limits because the existing formulation does not accept equality constraints other than the dynamics
equations. The IPM version used in HPIPM can effectively handle such reformulation. It deals
with inequality constraints by using slack variables. This solver deeply exploits the Riccati-based
recursion, which is perfectly aligned with our problem (26).

4.1.7 Line Search

The line-search of our project is based on the filter line-search used in IPOPT [12]. Each update
either improves the constraint satisfaction or the cost function. The constraint satisfaction θ(x) is
measured by taking the norm of all constraints scaled by the time discretization.

θ(x) = δt
∥∥∥[F(x)T,H(x)T]T

∥∥∥
2
. (27)

The focus changes to decreasing the constraints when the constraint is violated beyond a set threshold.
The focus changes to minimizing costs when constraint violation is below a minimum threshold.

Algorithm 1 shows the line-search method of this project. There are three cases that a step can
be accepted. First, when the behavior is at high constraint violation, a step will be rejected if the
new constraint violation is above the threshold and worse than the current violation. Second, when
both new and old constraint violations are lower than the threshold, and the current step is in a
descent direction, we require that the cost decrease satisfies the Armijo condition. Finally, the primary
acceptance condition is given where either a cost or constraint decrease is requested.

4.2 Analysis

In this study, we focus on the standing mode of a robot because its state is more constant and easier
to analyze than when it is walking. Our results, shown in Fig. 6, reveal the required forces on each
foot and the required joint velocities for this mode.

To solve the NLP, we employed the Sequential Quadratic Programming (SQP) method. When the
change in the Lagrangian between two consecutive iterations was less than the specified tolerance
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Figure 7: The performance of the solver with a good initial guess

(1e-4), the solver was terminated and the solutions were output. This indicates that the Karush-
Kuhn-Tucker (KKT) condition was satisfied within the specified tolerance, and a local minimum was
found.

However, due to the non-convexity of our problem, we cannot guarantee that the solver found the
global minimum. Nevertheless, our solution is likely to be very close to the global minimum based
on physical principles. Ideally, the control input should be

[
0, 0, 1

4mg, 0, 0, 0
]
, which means that the

ground reaction force on each foot should be a quarter of the robot’s weight, be perpendicular to the
ground, and all feet should have zero velocities. As shown in Fig. 6, the ground reaction forces on
each foot are nearly equal, with each force around 126 Newtons and the robot’s weight approximately
504 Newtons, which is just four times the force on each foot. The velocities of each joint were not
exactly zero, but they were very close to that value.

The initial guess is an important factor in the optimization of high-dimensional, nonlinear problems
such as this one. Through various tests, we have found that a good initial guess is essential in
obtaining the results shown in Fig. 6. In this case, the guess for the state trajectory was the default
standing state of the robot, while the guess for the control input trajectory was the most ideal input
as previously mentioned, i.e., every knot point on the trajectory was

[
0, 0, 1

4mg, 0, 0, 0
]
. Using this

initial guess, the SQP algorithm was able to find the solution in just two iterations. Fig. 7 shows
the scaled results of the change in various variables during the optimization process. After the
first iteration, the Lagrangian and constraint violations became extremely small, and in the second
iteration, the step length obtained from solving the quadratic programming problem was also very
small. The whole SQP was completed in an average of 8 ms.

In addition to using a good initial guess, we also tested some very poor initial guesses. For instance,
setting the initial guess to be a zero vector resulted in the solver needing five iterations to find a
solution (as shown in Fig. 8). If we set all decision variables to 1, the solver was unable to find a
solution and was terminated because the step size obtained from the line search became too small
(<1e-4), while the equality constraints violation remained very large. This emphasizes the importance
of a good initial guess in the optimization of high-dimensional, nonlinear problems.

We also conducted a detailed analysis of the effects of different initial guesses for the state and control
inputs on the solution through various tests. First, we combined a good guess of the state trajectory
with a guess of multiple input trajectories. We simply used a number multiplied by the optimal initial
guess of the input trajectory and recorded the results (as shown in Fig. 9). In the left side of the
figure, the multiplier is negative and the initial guess is infeasible because it is impossible to produce
a negative ground reaction force. We can see that these significantly infeasible guesses had a worse
effect on the solver’s performance.
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Figure 8: The performance of the solver with all zero vector initial guess

Figure 9: The performance of the solver with different control inputs guesses
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Table 2: Solver’s performance with different initial guesses of states

Initial Guess ≤ −10Sbest 0 Sbest 10Sbest ≥ 20Sbest

Number of Iterations until Convergence Fail 5 2 6 Fail

Finally, we used the same method to investigate the sensitivity of the solver to initial guesses for the
state. The results (Table 2) show that the solver is much more sensitive to guesses of the state than
guesses of the control inputs. A poor initial guess for the state can quickly cause the solver to fail.
This highlights the importance of carefully choosing the initial guess for the state in the optimization
of this problem.

We have also conducted some studies on the Q and R parameters in the optimization problem. The
parameters that we used and that have been tested to actually work are placed in Tables 3 - 8. It is
challenging to carry out extensive parameter studies due to the large number of parameters involved.
In our attempt to explore this issue, we implemented simple variations of the parameters in the Q
matrix. One such variation involved setting the value of a specific parameter, such as p_base_x in
Table 5, to 0. This resulted in the user’s command to control the robot in the x-direction becoming
ineffective, as expected. This can be understood by considering that a parameter of 0 will prevent the
objective function from penalizing the tracking error for the corresponding state.

5 Summary

In this project, we focused on the control of dynamic walking for a quadruped robot. To achieve this,
we formulated a trajectory optimization problem and utilized a nonlinear model predictive control
scheme to determine the appropriate control inputs for a walking quadruped robot. The continuous-
time problem was discretized into a NLP problem, which was then solved using a sequential quadratic
programming algorithm. To ensure that the quadratic programming subproblem in each SQP iteration
was convex, we employed a quadratic approximation to obtain a positive semi-definite Hessian.
Additionally, constraint projection was used to eliminate equality constraints and accelerate the
solution process. Through the use of the OCS2 Toolbox and the Robot Operating System (ROS), we
were able to control the robot to stand and walk stably in simulation. Furthermore, we conducted
various tests to analyze the properties of local and global optimality, initial guesses, and parameters.
Our results indicate that the solver is able to find the local optimum and is likely to be very close to
the global optimum. Additionally, we found that the solver is highly sensitive to initial guesses of the
state trajectory. A range of feasible parameter values was obtained through manual tuning.

6 Contributions

• Zixin Zhang: Organize team meetings. Disceretization method. Part of the proposal and
the final presentation. Implementation of the algroithm. Results analysis. Part of the final
report (analysis of problem statement, analysis, summary).

• Khai Nguyen: Proposal (part of presentation, cost function, constraints). Report (part of
presentation, problem statement, SQP formulation, QP solver)

• Fukang Liu: Responsible for the introduction part in the proposal, and line-search part in
the final report.

• Saurabh Borse: Robot dynamics and constraints projection. Part of the proposal and final
presentation. Part of the final report (abstract, introduction).

• Tianyu Ren: (Proposal) General NMPC formulation and centroidal dynamics model. (Final)
Quadratic approximation. And corresponding part in the presentation.

7 Appendix

The code is available at GitHub: https://github.com/Atom990/24785-NMPC
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Table 3: General parameters

Time Step 0.015 s
Maximum SQP Iterations 10
Friction Coefficient 0.1
ϵ 5.0
MPC Horizon 1.0 s
Tolerance of the Lagrangian gradient in the KKT condition 1e-4

Table 4: State weight matrix Q: centroidal momentum

Index Value Related State
(0,0) 15.0 vcom_x
(1,1) 15.0 vcom_y
(2,2) 30.0 vcom_z
(3,3) 5.0 L_x / robotMass
(4,4) 10.0 L_y / robotMass
(5,5) 10.0 L_z / robotMass

Table 5: State weight matrix Q: base pose

Index Value Related State
(6,6) 500.0 p_base_x
(7,7) 500.0 p_base_y
(8,8) 500.0 p_base_z
(9,9) 100.0 theta_base_z

(10,10) 200.0 theta_base_y
(11,11) 200.0 theta_base_x

Table 6: State weight matrix Q: joint positions

Index Value Related State
(12,12) 20.0 LF_HIP
(13,13) 20.0 LF_THIGH
(14,14) 20.0 LF_KNEE
(15,15) 20.0 LH_HIP
(16,16) 20.0 LH_THIGH
(17,17) 20.0 LH_KNEE
(18,18) 20.0 RF_HIP
(19,19) 20.0 RF_THIGH
(20,20) 20.0 RF_KNEE
(21,21) 20.0 RH_HIP
(22,22) 20.0 RH_THIGH
(23,23) 20.0 RH_KNEE

Table 7: Control weight matrix R: feet contact forces

Index Value Related State
(0,0) 1.0 left_front_force
(1,1) 1.0 left_front_force
(2,2) 1.0 left_front_force
(3,3) 1.0 right_front_force
(4,4) 1.0 right_front_force
(5,5) 1.0 right_front_force
(6,6) 1.0 left_hind_force
(7,7) 1.0 left_hind_force
(8,8) 1.0 left_hind_force
(9,9) 1.0 right_hind_force

(10,10) 1.0 right_hind_force
(11,11) 1.0 right_hind_force
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Table 8: Control weight matrix R: foot velocity

Index Value Related State
(12,12) 5000.0 LF_x
(13,13) 5000.0 LF_y
(14,14) 5000.0 LF_z
(15,15) 5000.0 LH_x
(16,16) 5000.0 LH_y
(17,17) 5000.0 LH_z
(18,18) 5000.0 RF_x
(19,19) 5000.0 RF_y
(20,20) 5000.0 RF_z
(21,21) 5000.0 RH_x
(22,22) 5000.0 RH_y
(23,23) 5000.0 RH_z

Algorithm 1 Backtracking Line-Search
1: Hyperparameters: αmin = 10−4, θmax = 10−2, θmin = 10−6, η = 10−4, γϕ = 10−6, γα = 0.5
2: α← 1.0
3: θk ← θ(xi)
4: ϕk ← ϕ(xi)
5: Accept← False
6: while Not Accepted andα ≥ αmin do
7: θi+1 ← θ(xi + αδx)
8: ϕi+1 ← ϕ(xi + αδx)
9: if θi+1 > θmax then

10: if θi+1 < (1− γθ)θi then
11: Accept← True
12: end if
13: else if max(θi+1, θi) < θmin and ∇ϕ(xi)T

δx < 0 then
14: if ϕi+1 < ϕi + ηα∇ϕ(xi)T

δx then
15: Accept← True
16: end if
17: else
18: if ϕi+1 < ϕi − γϕθi or θi+1 < (1− γθ)θi then
19: Accept← True
20: end if
21: end if
22: if Not Accepted then
23: α← γαα
24: end if
25: end while
26: if Accepted then
27: xi+1 ← xi + αδx
28: else
29: xi+1 ← xi

30: end if
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Nomenclature

λ Lagrange multipliers
τ Joint torques
δx Optimal SQP step
δ Relaxed barrier function parameter
ϵ Friction cone smooth parameter
B Relaxed barrier function
b Nonlinear components
F(x) NLP initial and dynamic constraints
Fc Vector of stacked contact wrenches
fc Ground reaction forces
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H(x) NLP general equality constraints
hcom Centroidal momentum
Jc Matrix of stacked Jacobians
M Generalized Mass Matrix
P Constraint projection Variable
p Constraint projection Variable
Q State weight matrix
qb Robot’s body pose
qj Joints position
R Control weight matrix
rcom Position of the contact point w.r.t the COM
s Robot states
sREF Reference robot states
u Control inputs
uREF Reference control inputs
v Joints velocity
x Decision variables
µ Relaxed barrier function parameter
µc Friction coefficient
ϕ NLP objective function
g Gravitational acceleration
m Robot’s mass
N Horizon length
T Horizon time
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