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ABSTRACT 

In this paper, a new class of RISE-based adaptive reinforcement learning (ARL) 

control strategy has been proposed for second-order nonlinear MIMO systems. RISE 

algorithm has the ability to learn the unknown model uncertainties and external disturbances. 

RISE control law with sliding variables guarantees tracking performance under restricted 

assumptions on the uncertainties and nonlinearities of the system. It is proposed to replace 

some of the static feedback gains in the original RISE control law by nonlinear ones 

depending on the system states. The concept is based on the fact that nonlinear time-varying 

gains improve overall efficiency by compensating for a variety of nonlinearities and additive 

disturbances. In addition, adaptive reinforcement learning is employed to obtain optimal 

tracking performance for the uncertain/disturbed nonlinear robot system. Thanks to the online 

actor-critic ADP algorithm based on neural network, the solution of HJB equation was 

achieved by interation process. All explicit variables and functions in this work contribute to 

the numerical comparison between two approaches. The obtained simulation results on a 2-

DOF robot manipulator show clearly better performance of the proposed time-varying 

feedback RISE -based ARL control strategy compared to the original controller in terms of 

tracking accuracy and efficiency. 

 

Keywords: robust optimal control, adaptive reinforcement learning, time-varying 

RISE, sliding mode control, disturbance. 
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I. INTRODUCTION 

In control theorem and control engineering, optimal control is a significant research 

area [1,2]. It is concerned with determining a control strategy that optimally steers the 

dynamics system to equilibrium in terms of a performance index function [3,4]. For linear 

systems, one must solve the Riccati equation which requires full knowledge of the system 

dynamics [5,6]. However, under the mathematical viewpoint, finding an optimal controller is 

equivalent to solving the nonlinear partial differential equation Hamilton-Jacobi-Bellman 

(HJB) equation, which is difficult to obtain a global analytic solution. In order to obtaining the 

approximate solution of the HJB equation, several techniques have been proposed, which 

includes reinforcement learning (RL) [7]. RL is a method for solving optimization problems. 

It involves an actor or agent that interacts with the environment and modifies its actions or 

control policies, based on stimuli received in response to its actions [8]. One of the most 

popular control object for optimality methods is nonlinear dynamical systems. 

The motion of a physical systems group such as robotic manipulators, ship, surface 

vessels, quad-rotor can be considered as mechanical systems with dynamic uncertainties, 

external disturbances [9]. Furthermore, the actuator saturation and full-state constraint, finite 

time control have been mentioned in [10] - [15]. Dealing with unknown parameters and 

disturbances, the terminal sliding mode control (SMC) is one of the remarkable solutions with 

the consideration of finite-time convergence. In [16], the non-singular terminal sliding surface 

was employed to obtain the adaptive terminal SMC for a manipulator system. Disturbances 

including external disturbances, unmodelled dynamics and parameter perturbations, widely 

exist in aerospace engineering, such as aircrafts, missiles, satellites and also many other 

engineering systems [17,18]. Generally speaking, disturbance attenuation, noise and time 

delays are important aspects in control system design [19]. In [20], the multiplicative 

stochastic link noises were taken into consideration, and distributed filtering problem was 

successfully solved. In [21], the dissipative control problem for nonlinear Markovian jump 

systems subject to actuator failures and mixed time-delays were addressed. It is well known 

that H∞ control is one of the design methods for handling the disturbance attenuation problem 

of control systems. However, H∞ control is in general too conservative to obtain a highly 

accurate control performance when treating a modeled disturbance as an unmodeled one [22]. 

The disturbance observer-based technique was first presented in [23] for a motion servo 

system. Now, disturbance observer-based control schemes for linear and non-linear systems 

have been successfully developed and applied in various engineering systems. Later, some 

disturbance-observer-based control approaches were developed to cope with nonlinear 

systems in the time domain formulations [18,19,24]. However, nonlinear systems subjected to 

unknown time-varying external disturbance will further increase the difficulty and complexity 

for the optimal control system design in practice [25]. Time-varying external disturbance of 

the nonlinear system needs to be efficiently handled to achieve satisfactory closed-loop 

control performance.  

A novel control mechanism called Robust Integral of the Sign of the Error (RISE) has 

been developed in [26]. RISE feedback law is a continuous control solution dealing with 

Multi-Input-Multi-Output (MIMO) high-order nonlinear systems. This non-model-based 

control strategy can guarantee a semi-global asymptotic tracking under limited assumptions 

on the system uncertainties and time-varying parameters. RISE -based controllers have been 

applied in different real-time applications thanks to the robustness and disturbances rejection 

provided by RISE feedback closed-loop architecture. Because of the powerful robustness and 

performance acquired by RISE and RISE -based control strategies, the idea of improving such 

controller arises. Enriching this control law with more nonlinearity may allow it to 
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compensate for more percentage of high nonlinearities abundant extensively in most of the 

industrial robotized applications. 

According to our investigation, few studies are about the optimal control problems of 

nonlinear systems with completely unknown disturbance based on ADP [27]. It is known that 

for improving the disturbance compensation ability, some approaches can be employed to 

facilitate the direct adaptive control for the uncertain nonlinear system [28]. Thanks to the 

neural network approximation technique, authors in [29] proposed the novel online ADP 

algorithm which enables to tune simultaneously both actor and critic terms. The training 

problem of critic neural network (NN) was determined by modified Levenberg-Marquardt 

technique to minimize the square residual error. Furthermore, the weights convergence and 

convergence problem were shown by the weights in actor and critic NN tuning the need of 

persistence of excitation (PE) condition [29]. Considering the approximate Bellman error, the 

proposed algorithm in [29] enables to online simultaneously adjust with unknown drift term. 

Extending this work, by using the special cost function, a model-free adaptive reinforcement 

learning has been presented without any information of the system dynamics [30]. 

Furthermore, by integrating the additional identifier, the nonlinear systems were controlled by 

online adaptive reinforcement learning with completely unknown dynamics [31], [32]. 

However, these three above works have not mentioned for robotic systems as well as non-

autonomous systems yet [30], [31], [32]. In the work of [33], under the consideration of 

approximation and discrete time systems, online ADP tracking control was proposed for the 

dynamic of mobile robots. Inspired by the above works and analysis from traditional 

nonlinear control technique to optimal control strategy, the work focus on the frame of online 

adaptive reinforcement learning for manipulators and nonlinear control with main 

contribution are described in the following:  

1) Compared to the previous works [9]-[12], [16]-[24], which discussed classical 

nonlinear controllers in manipulator control systems,, an adaptive reinforcement 

learning (ARL) -based optimal control design is proposed for an uncertain 

manipulator system with disturbances in this paper. In comparison to the proposed 

optimal control in [9], which uses the Kim-Lewis formula in a special case of cost 

function, ARL-based optimal control architecture has the advantage of being able 

to handle general performance index for non-autonomous systems with appropriate 

transform. 

2) In contrast to the reinforcement learning scheme -based optimal control in [16], 

[30]-[33] where mathematical systems of a first-order continuous-time nonlinear 

autonomous system without any external disturbance are considered, the adaptive 

dynamic programming, in conjunction with the sliding variable and the time-

varying Robust Integral of the Sign of Error (RISE), was used for second-order 

uncertain/disturbed manipulators in the situation of trajectory tracking control non-

autonomous systems.  

3) Moreover, this work clarifies initial conditions of the robot manipulator system 

and presents exploratory signal function. In order to demonstrate the effectiveness 

of the proposed time-varying feedback RISE -based ARL controller, both the 

original RISE and the proposed control algorithms were implemented on the 2-

DOF robot model. A comparative study between the two implemented controllers 

is introduced in the simulation section. 

The rest of this paper is organized as follows. Section 2.1 presents basic concepts on 

reinforcement learning. In section 2.2, a background on the original RISE controller is 

presented. In section 2.3, the proposed contribution to RISE control is introduced. Section 2.4 
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is dedicated to introduce a combined solution of time-varying RISE -based ARL control 

schem. In section 2.5, the simulation results and comparison are shown and discussed.  
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II. RESEARCH OUTPUT 

2.1 REINFORCEMENT LEARNING AND OPTIMAL CONTROL 

Reinforcement Learning (RL) refers to the problem of a goal-directed agent 

interacting with an uncertain environment. The goal of an RL agent is to maximize a long-

term scalar reward by sensing the state of the environment and taking actions which affect the 

state. At each step, an RL system gets evaluative feedback about the performance of its 

action, allowing it to improve the performance of subsequent actions. Several RL methods 

have been developed and successfully applied in machine learning to learn optimal policies 

for finite-state finite-action discrete-time Markov Decision Processes (MDPs), shown in 

Figure 1. An analogous RL control system is shown in Figure 2, where the controller, based 

on state feedback and reinforcement feedback about its previous action, calculates the next 

control which should lead to an improved performance. The reinforcement signal is the output 

of a performance evaluator function, which is typically a function of the state and the control. 

An RL system has a similar objective to an optimal controller which aims to optimize a long-

term performance criterion while maintaining stability. This chapter discusses the key 

elements in the field of RL and how they can be applied to solve control problems.  

 

Figure 1 Reinforcement Learning for MDP 

 

Figure 2 Reinforcement Learning control system 

2.1.1 Reinforcement Learning Methods 

RL methods typically estimate the value function, which is a measure of goodness of a 

given action for a given state. The value function represents the reward/penalty accumulated 

by the agent in the long run, and for a deterministic MDP, may be defined as an infinite-

horizon discounted return as [34] 



Báo cáo công trình sinh viên nghiên cứu khoa học năm học 2020-2021 

  

 

( )0 1

0

,u k

k

k

V x r


+

=

=          (1) 

where kx  and ku  are the state and action, respectively, for the discrete-time system 

( ) ( )1 1, , ,k k k k k kx f x u r r x u+ +=  is the reward/penalty at the thk  step, and  )0,1   is the 

discount factor used to discount future rewards. The objective of an RL method is to 

determine a policy which maximizes the value function. Since the value function is unknown, 

typically the first step is to estimate the value function, which can be expressed using 

Bellman’s equation as [34] 

( ) ( , ) ( ( , ))u uV x r x u V f x u= +        (2) 

where the index k  is suppressed. The optimal value function is defined as 

( ) min ( )u

u
V x V x =          (3) 

which can also be expressed using the Bellman optimality condition as 

( ) min ( , ) ( ( , ))

( ) arg min ( , ) ( ( , )) .

u

u

V x r x u V f x u

u x r x u V f x u





 

 

 = + 

 = + 

      (4) 

The above Bellman relations form the basis of all RL methods – policy iteration, value 

iteration, and Q-learning [34, 35, 36]. RL methods can be categorized as model-based and 

model-free. Model-based or DP-based RL algorithms utilize the expression in (4) but are 

offline and require perfect knowledge of the environment, as seen from (4). On the other 

hand, model-free RL algorithms are based on temporal difference (TD), which refers to the 

difference between temporally successive estimates of the same quantity. In contrast to DP-

based RL methods, TD-based RL methods are online and do not use an explicit model of the 

system, rather they use data (set of samples, trajectories etc.) obtained from the process, i.e., 

they learn by interacting with the environment. Some of the popular RL methods are 

subsequently discussed. 

a) Policy Iteration 

Policy Iteration (PI) algorithms [37, 38] successively alternate between policy 

evaluation and policy improvement. The algorithm starts with an initial admissible policy, 

estimates the value function (policy evaluation), and then improves the policy using a greedy 

search on the estimated value function (policy improvement). The policy evaluation step in 

DP-based PI is performed using the following recurrence relations until convergence to the 

value function 

( ) ( , ) ( ( , )) ,u uV x r x u V f x u +         (5) 

where the symbol ' '  denotes the value on the right being assigned to the quantity 

on the left. After the convergence of policy evaluation, policy improvement is performed 

using 

( ) arg min ( , ) ( ( , ))u

a
u x r x a V f x a= +          (6) 

It can be seen from (5) and (6) that the DP-based PI algorithm requires knowledge of 

the system model ( , ).f x u Using the model-free (0)TD  algorithm [39], which learns from 
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interacting with the environment, this limitation is overcome. Using the (0)TD  algorithm, the 

value function is estimated using the following update 

( ) ( ) ( , ) ( ) ( )u u u uV x V x r x u V x V x   + + −        (7) 

where ( 0,1   is the learning rate, and x  denotes the next state observed after 

performing action u  at x . In contrast to DP-based policy evaluation, the value function 

estimation in (7) does not require an explicit model of the system. The PI algorithm converges 

to the optimal policy [38]. Online PI algorithms do not wait for the convergence of the policy 

evaluation step to implement policy improvement; however, their convergence can only be 

guaranteed only under very restrictive conditions, such as generation of infinitely long 

trajectories for each iteration [40]. 

b) Value Iteration 

Value Iteration (VI) algorithms directly estimate the optimal value function, which is 

then used to compute the optimal policy. It combines the truncated policy evaluation and 

policy improvement steps in one step using the following recurrence relations from DP [34] 

 ( ) min ( , ) ( ( , ))
a

V x r x a V f x a +         (8) 

VI converges to the optimal *( )V x , and is said to be less computationally intensive 

than PI, although PI typically converges in fewer iterations [41]. 

c) Q-Learning 

Q-Learning algorithms use Q-factors ( , )Q x u , which are state-action pairs instead of 

the state value function ( )V x . The Q-iteration algorithm uses TD learning to find the optimal 

Q-factor *( , )Q x u  as 

( , ) ( , ) ( , ) min ( , ) ( , ) .
a

Q x u Q x u r x u Q x a Q x u   + + −
 

     (9) 

The Q-learning algorithm [35] is one of the major breakthroughs in reinforcement 

learning, since it involves learning the optimal action-value function independent of the policy 

beingfollowed (also called off-policy), which greatly simplifies the convergence analysis of 

the algorithm. Adequate exploration is, however, needed for the convergence to *Q . The 

optimal policy can be directly found from performing a greedy search on *Q  as 

( ) arg min ( , ) .
a

u x Q x a =          (10) 

2.1.2 Aspects of Reinforcement Learning Methods 

This section discusses aspects and issues in implementation of the RL methods on 

high dimensional and large-scale practical systems. 

a) Curse of Dimensionality and Function Approximation 

RL methods where value function estimates are represented as a table require, at every 

iteration, storage and updating of all the table entries corresponding to the entire state space. 

In fact, the computation and storage requirements increase exponentially with the size of the 

state space, also called the curse of dimensionality. The problem is compounded when 

considering continuous spaces which contain infinitely many states and actions. One solution 

approach is to represent value functions using function approximators, which are based on 

supervised learning, and generalize based on limited information about the state space [34]. A 
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convenient way to represent value functions is by using linearly parameterized approximators 

of the form ( )T x  , where   is the unknown parameter vector, and   is a user-defined basis 

function. Selecting the right basis function which represents all the independent features of 

the value function is crucial in solving the RL problem. Some prior knowledge regarding the 

process is typically included in the basis function. The parameter vector is estimated using 

optimization algorithms, e.g., gradient descent, least squares etc. Multi-layer neural networks 

may also be used as nonlinearly parameterized approximators; however, weight convergence 

is harder to prove as compared to linearly parameterized network structures. 

 

Figure 3 Actor-critic architecture for online policy iteration 

b) Actor-Critic Architecture 

Actor-critic methods, introduced by Barto [42], implement the policy iteration 

algorithm online, where the critic is typically a neural network which implements policy 

evaluation and approximates the value function, whereas the actor is another neural network 

which approximates the control. The critic evaluates the performance of the actor using a 

scalar reward from the environment and generates a TD error. The actor-critic neural 

networks, shown in Figure 3 are updated using gradient update laws based on the TD error. 

c) Exploitation Vs Exploration 

The trade-off between exploitation and exploration has been a topic of much research 

in the RL community. For an agent in an unknown environment, exploration is required to try 

out different actions and learn based on trial and error, whereas past experience may also be 

exploited to select the best actions and minimize the cost of learning. For sample or trajectory 

based RL methods (e.g., Monte Carlo) in large dimensional spaces, selecting best actions 

(e.g., greedy policy) based on current estimates is not sufficient because better alternative 

actions may potentially never be explored. Sufficient exploration is essential to learn the 

global optimal solution. However, too much exploration can also be costly in terms of 

performance and stability when the method is implemented online. One approach is to use a ε-

greedy policy, where the exploration is the highest when the agent starts learning, but 

gradually decays as experience is gained and exploitation is preferred to reach the optimal 

solution. 

2.1.3 Infinite Horizon Optimal Control Problem 

RL has close connections with optimal control. In this section, the undiscounted 

infinite horizon optimal control problem is formulated for continuous-time nonlinear systems. 

Consider a continuous-time nonlinear system 

( , ) ,x F x u=            (11) 
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where ( ) , ( )n mx t u t     is the control input, : nF  →  is Lipschitz 

continuous on   containing the origin, such that the solution ( )x t  of the system in (11) is 

unique for any finite initial condition 0x  and control .u   It is also assumed that 

(0,0) 0.F =  Further, the system is stabilizable, i.e. there exists a continuous feedback control 

law ( ( ))u x t such that the closed-loop system is asymptotically stable. 

The infinite-horizon scalar cost function for the system (11) can be defined as 

( ( ), ( )) ( ( ), ( ))
t

J x t u r x s u s ds


=         (12) 

where t  is the initial time, ( , )r x u   is the immediate or local cost for the state and 

control, defined as 

( , ) ( ) ,Tr x u Q x u Ru= +         (13) 

where ( )Q x   is continuously differentiable and positive definite, and m mR   is a 

positive-definite symmetric matrix. The optimal control problem is to find an admissible 

control * )(u   , such that the cost in (12) associated with the system (11) is minimized 

[43]. An admissible control input ( )u t  can be defined as a continuous feedback control law 

)( ( )) (u x t   , where ( )   denotes the set of admissible controls, which asymptotically 

stabilizes the system (11) on , (0) 0u = , and ( )J   in (12) is finite. 

The optimal value function can be defined as 

( ) Ψ( )
( ( )) min ( .( ), ( ( )))

u
t

t
V x t r x s u x s ds







 



=        (14) 

Assuming the value function is continuously differentiable, Bellman’s principle of 

optimality can be used to derive the following optimality condition [43] 

( ) Ψ( )

( )
0 min ( , ) ( , )

u t

V x
r x u F x u

x





 
= + 

 
      (15) 

which is a nonlinear partial differential equation (PDE), also called the HJB equation. 

Based on the assumption that ( )V x  is continuously differentiable, the HJB in (15) provides a 

means to obtain the optimal control ( )u x
 in feedback form. Using the convex local cost in 

(13) and(15), a closed-form expression for the optimal control can be derived as 

11 ( , ) ( )
( ) .

2

T TF x u V x
u x R

u x


 −  

= −
 

       (16) 

For the control-affine dynamics of the form 

( ) ( ) ,x f x g x u= +          (17) 

where ( ) nf x   and ( ) n mg x  , the expression in (16) can be written in terms of 

the system state as 

11 ( )
( ) ( )

2

T
T V x

u x R g x
x


 − 

= −


       (18) 
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In general, the solutions to the optimal control problem may not be smooth. Existence 

of a unique non-smooth solution (called the viscosity solution) is studied. 

The HJB in (15) can be rewritten in terms of the optimal value function by substituting 

for the local cost in (13), the system in (17) and the optimal control in (18), as 

1( ) 1 ( ) ( )
0 ( ) ( ) ( ) ( ) ,

4

0 (0).

T
TV x V x V x

Q x f x g x R g x
x x x

V

  
−



  
= + −

  

=

    (19) 

Although in closed-form, the optimal policy in (18) requires knowledge of the optimal 

value function ( )V x , the solution of the HJB equation in (19). The HJB equation is 

problematic to solve in general and may not have an analytical solution. 

2.1.4 Optimal Control Methods 

Since the solution of the HJB is prohibitively difficult and sometimes even impossible, 

several alternative methods are investigated in literature. The calculus of variations approach 

generates a set of a first-order necessary optimality conditions, called the Euler-Lagrange 

equations, resulting in a two-point (or multi-point) boundary value problem, which is 

typically solved numerically using indirect methods, such as shooting, multiple shooting etc 

[43]. Another numerical approach is to use direct methods where the state and/or control are 

approximated using function approximators or discretized using collocation and the optimal 

control problem is transcribed to a nonlinear programming problem, which can solved using 

methods such as direct shooting, direct collocation, pseudo-spectral methods etc. Although 

these numerical approaches are effective and practical, they are open-loop, offline, require 

exact model knowledge and are dependent on initial conditions. Another approach based on 

feedback linearization involves robustly canceling the system nonlinearities, thereby reducing 

the system to a linear system, and solving the associated Algebraic Riccati Equation 

(ARE)/Differential Riccati Equation (DRE) for optimal control. A drawback of feedback 

linearization is that it solves a transformed optimal control problem with respect to a part of 

the control while the other part is used to cancel the nonlinear terms. Moreover, linearization 

cancels all nonlinearities, some of which may be useful for the system. Inverse optimal 

controllers circumvent the task of solving the HJB by proving optimality of a control law for a 

meaningful cost function. The fact that the cost function cannot be chosen a priori by the user 

limits the applicability of the method. 

Given the limitations of methods that seek an exact optimal solution, the focus of 

some literature has shifted towards developing methods which yield a sub-optimal or an 

approximately optimal solution. Model-predictive control (MPC) or receding horizon control 

(RHC) is an example of an online model-based approximate optimal control method which 

solve the optimal control problem over a finite time horizon at every state transition leading to 

a state feedback optimal control solution. These methods have been successfully applied in 

process control where the model is exactly known and the dynamics are slowly varying. An 

offline successive approximation method improves the performance of an initial stabilizing 

control by approximating the solution to the generalized HJB (GHJB) equation and then using 

the Bellman’s optimality principle to compute an improved control law. This process is 

repeated and proven to converge to the optimal policy. The GHJB, unlike the HJB, is a linear 

PDE which is more tractable to solve, e.g., using methods like the Galerkin projection. The 

successive approximation method is similar to the policy iteration algorithm in RL; however, 

the method is offline and requires complete model knowledge. To alleviate the curse of 

dimensionality associated with dynamic programming, a family of methods, called AC 

designs (also called ADP) to solve the optimal control problem using RL and neural network 
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backpropagation algorithms. The methods are, however, applicable only for discrete-time 

systems and lack a rigorous Lyapunov stability analysis. 

2.1.5 Adaptive Optimal Control and Reinforcement Learning 

Most optimal control approaches discussed in Section 2.1.4 are offline and require 

complete model knowledge. Even for linear systems, where the LQR gives the closed-form 

analytical solution to the optimal control problem, the ARE is solved offline and requires 

exact knowledge of the system dynamics. Adaptive control provides an inroad to design 

controllers which can adapt online to the uncertainties in system dynamics, based on 

minimization of the output error (e.g., using gradient or least squares methods). However, 

classical adaptive control methods do not maximize a long-term performance function, and 

hence are not optimal. Adaptive optimal control refers to methods which learn the optimal 

solution online for uncertain systems. RL methods described in Section 2.1.1 have been 

successfully used in MDPs to learn optimal polices in uncertain environments, e.g., TD-based 

Q-learning is an online model-free RL method for learning optimal policies. Sutton et al. 

argue that RL is a direct adaptive optimal control technique. Owing to the discrete nature of 

RL algorithms, many methods have been proposed for adaptive optimal control of discrete-

time systems. Unfortunately, an RL formulation for continuous-time systems is not as 

straightforward as in the discrete-time case, because while the TD error in the latter is model-

free, it is not the case with the former, where the TD error formulation inherently requires 

complete knowledge of the system dynamics (15). RL methods based on the model-based TD 

error for continuous-time systems are proposed. A partial model-free solution is proposed 

using an actor-critic architecture, however, the resulting controller is hybrid with a 

continuous-time actor and a discrete-time critic. Other issues concerning RL-based controllers 

are: closed-loop stability, convergence to the optimal control, function approximation, and 

tradeoff between exploitation and exploration. Few results have rigorously addressed these 

issues which are critical for successful implementation of RL methods for feedback control. 

The work in this dissertation is motivated by the need to provide a theoretical foundation for 

RL-based control methods and explore their potential as adaptive optimal control methods. 

2.2 RISE CONTROL FOR NONLINEAR SYSTEMS 

2.2.1 Background on RISE control 

First, we examine a first-order, single-input nonlinear system having the general form: 

( ) ( )+ =m f u    (20) 

where ( ) t  is the system state, ( ) u t is the control input, and ( )m  , ( )f   

are uncertain nonlinear function. It is assumed that ( )m   and ( )f   satisfy the following 

assumptions: 

Assumption 1: The function ( )m   is positive and bounded as follows: 

( ) ( ) m m m   (21) 

where m  denotes a positive constant, and ( )m   denotes a positive non-

decreasing function. 

Assumption 2: The functions ( )m   and ( )f   are second-order differentiable with 

respect to ( )t  such that 
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2

2

2

2

( ) ( )
( ), ,  if  ( )

( ) ( )
( ), ,   if  ( )

m m
m t

f f
f t

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 (22) 

Let ( )d t  be a given reference trajectory that is continuously differentiable up to 

its third derivative such that 

( )
,  0,1,2,3   =

i

d

i

d t
i

dt



 (23) 

To quantify the control objective, we define the tracking error ( ) e t  as follows 

−de    (24) 

Our objective is to obtain asymptotic tracking with a continuous control law using (23) 

and norm-based, inequality bounds on the functions 
( )



d

i

d

im 


 and 

( )
,  0,1,2


=



d

i

i

d

i
f 


. 

Remark 1: For simplicity of presentation, we have assumed ( )m   and ( )f   do not 

depend explicitly on time or on unknown time-varying parameters. However, it should be 

emphasized that the proposed control approach can compensate for these phenomena 

provided the time-varying effects satisfy second-order differentiability conditions similar to 

those given in (22). That is, the functions ( )m   and ( )f   could be easily replaced by 

( )1, ( ),m t t   and ( )2, ( ),f t t   where ( ),  1, 2=i t i  denote unknown time-varying parameter 

vectors and other time-varying disturbance that may appear nonlinearly in the model. 

RISE control law that can achieve the control objective is generally defined as 

follows: 

( ) ( ) ( ) ( )
0

0( ) 1 ( ) 1 1 ( ) sgn( ( )) = + − + + + + 
t

s s s

t

u t k e t k e t k e e d       (25) 

where , , sk    are positive control gains, 0t  is the initial time, and ( )sgn   

denotes the standard signum function. The control law of (25) ensures asymptotic tracking 

provided the control gains  and sk   are chosen sufficiently large relative to the norm of the 

initial tracking error and a reference trajectory-based bound, respectively 

( )2 02

0 0

3 1

( )1

4
s

t
k

 
 

 

 
 
 
 

 (26) 

1
( ) ( )d dN t N t


 +  (27) 

Based on the stability analysis introduced in [26], the signal (25) has the ability to 

learn the unknown system model. 

2.2.2 Time-varying RISE 

The original controller in (25) can be split up into two components: a linear feedback 

part based on the measured combined error e , and a nonlinear signum function. The linear 
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part consists of proportional and integral actions on the combined error, which is similar to a 

PI controller but taking as input the combined error instead of the position error. These two 

linear control actions may lead up to poor performances when dealing with highly nonlinear 

systems at critical dynamic operating conditions. They have considerable sensitivity to 

disturbances and limited tuning abilities. 

It is proposed to replace the proportional and the integral static feedback gains by 

nonlinear time-varying ones. The proposed time-varying feedback RISE controller is given as 

follows: 

( ) ( ) ( )
0

00 0( ) 1 ( ) 1 ( ) 1 (.) s(.) (( )) ( ) gn( ) = + − + + + + 
t

s s s

t

u tt K e t K e t k e e d      (28) 

with (.)sK  and (.)  are two nonlinear feedback functions designed in: 

1

1

1

0 1

1 1 1

0 1 1

,
(.) ( , , )

,

−

−

 
 = 



s

s s

s

k e e
K K e

k e






 

 
 (29) 

2

2

1

0 2

2 2
1

0 2 2

,
(.) ( , , )

,

−

−

   
 = 

 


e e
e

e





 
   

  
 (30) 

 

(a) Evolution of (.)sK  

 

(b) Evolution of (.)  

Figure 4 Evolution of the proposed nonlinear gains with resprect to their arguments 

where 0 0 1 1 2 2, , , , ,sk       are positive design parameters need to be chosen carefully. 

Indeed, to meet the desired performance, 1  and 2  are chosen within the intervals  0.5,1 and 

 1,1.5  respectively. 

On one hand, the selection of 1  within the interval  0.5,1  can reduce the 

proportional gain (.)sK  at high combined error values and increase it at small ones (see 

Figure 4-a). As long as the combined error remains within the small interval  1 1,−   around 

zero, the proportional gain remains constant as a maximum saturated value. Notice that the 

combined error gives knowledge about both position and velocity errors. Thus, such variation 
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of the gain could result in a rapid transition of the closed-loop system states and a favorable 

damping. 

On the other hand, the nonlinear feedback gain (.)  varies as function of the integral 

of the combined error (see Figure 4-b), which means that it is more concerned with the steady 

state combined errors (i.e., errors that persist with time). The choice of (.)  within the 

interval  1,1.5  gives large integral gain for the large steady state combined errors, and small 

integral gain for the small steady state combined errors as illustrated in Figure 4-b. As long as 

this error remains within the small interval  2 2,−   around zero, the integral gain remains as 

a minimum constant value. This variation may accelerate the tracking process towards the set 

point and prevent the integral term from accumulating above or below specific bounds which 

can solve the integral windup problem. 

Choosing 1  and 2  in their corresponding intervals leads to globally bounded 

nonlinear functions as follows (bounds can be realized from Figure 4): 

1 1
1 1

0 0 10 (.)sm s s s sMK k e K k K



− −


          (31) 

2
2

1
1

2 20 2 2 20 20 (.)m Me


     
−

−


          (32) 

where .


 indicates the infinity-norm. 

Including the above-mentioned time-varying feedback gains in the standard equation 

of a RISE controller may boost the controller's global tracking efficiency and robustness to 

changes in system parameters. It's worth double-checking that the nonlinear function structure 

is easy enough to incorporate in real-time experiments. 

2.3 PROPOSED APPROACH: TIME-VARYING RISE FOR ADAPTIVE 

REINFORCEMENT LEARNING OF NONLINEAR SYSTEMS 

2.3.1 Robot Manipulator Model 

Consider the planar robot manipulator systems described by the following dynamic 

equation:  

( ) ( , ) ( ) ( ) ( ) ( )+ + + + =M C G F d t t             (33) 

where ( )  n nM   is a generalized inertia matrix, ( , )  n nC    is a generalized 

centripetal-Coriolis matrix, ( ) nG  is a gravity vector, ( ) nF  is a generalized friction, 

( )d t is a vector of disturbances, ( )t is the vector of control inputs. It is worth emphasizing 

that the above manipulator belongs to the class of Euler-Lagrange systems, which has the 

following special property [12]: 

Property 1: The inertia symmetric matrix ( )M   is positive definite, and satisfies 

  n : 

2 2
( ) ( ) Tm M m       (34) 

( ( ) 2 ( , )) 0− =T M C      (35) 

where m  is a positive constant, ( )m   is a positive non-decreasing function 

with respect to . Notice that   stands for the classical Euclidean norm. 
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Several following assumptions will be employed in considering the stability later. 

Assumption 3: If ( ), ( ) t t L  , then all these functions ( , )C   , ( )F  , ( )G   and 

the first, second partial derivatives of all functions of ( )M  , ( , )C   , ( )G   with respect to 

( )t  as well as of the elements of ( , )C   , ( )F   with respect to ( )t  exist and are bounded. 

Assumption 4: The desired trajectory ( )d t as well as the first, second, third and 

fourth time derivatives of it exist and are bounded. 

Assumption 5: The vector of external disturbance term ( )d t  and the derivatives with 

respect to time of ( )d t  are bounded by known constants. 

The control objective is to ensure the system tracks a desired time-varying trajectory 

( )refn t  in presence of dynamic uncertainties by using the frame of online adaptive 

reinforcement learning based optimal control design and disturbance attenuation technique. 

Considering the sliding variable 1 1 1( )s t e e= +  ( 1 0n n   , 1( ) = −refe t   ) and the 

coresponding sliding surface as follows: 

1{ ( ) : ( ) 0}=  =nM e t s t  (36) 

According to (1), the dynamic equation of the sliding variable ( )s t can be given as: 

= − − + +Ms Cs f d  (37) 

where ( , , , , )ref ref reff       is nonlinear function defined: 

1 1 1 1( ) ( )ref reff M e C e G F   = + + + + +  (38) 

Remark 2: The role of above sliding variable is considered to reduce the order of 

second-order uncertain/disturbed manipulator systems. It enable us to employ the adaptive 

reinforcement learning for a first-order continuous-time nonlinear autonomous system. 

Additionally, the external disturbance ( )d t  and nonlinear function f  are handled by time-

varying RISE in the next section. 

2.3.2 Control Desgin 

Assume that the dynamic model of robot manipulator is known, the control input can 

be designed as: 

= + −f d u  (39) 

where the term u  is designed by using optimal control algorithm and the remaining 

term +f d  will be estimated later. Therefore, it can be seen that: 

= − +Ms Cs u  (40) 

According to (36) and (40), we obtain the following time-varying model: 

1 1

1 1
1 1 1 1

0

( ) ( , )

n n

ref ref ref

e s
x u

M e C e e s s M



   


− −

− +   
= +   − − − + −   

 (41) 

where 1[ , ]= T T Tx e s and the infinite horizon cost function to be minimized is 

0

1 1
( , ) ( )

2 2



= +
T TJ x u x Qx u Ru dt  (42) 
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where 2 2 n nQ  and  n nR  are positive definite symmetric matrices. 

However, in order to deal with the problem of tracking control, some additional states 

are given. This work leads us to avoid the non-autonomous systems. Subsequently, the 

adaptive reinforcement learning is considered to find optimal control solution for autonomous 

affine state-space model with the assumption that the desired trajectory ( )ref t  

satisfies ( ) ( )=ref ref reft f    

( ) ( )= +X A X B X u  (43) 

where [ , , ]= T T T T

ref refX x    (44) 

1 1

1

1 1 1 1( ) ( , )
( )

( )

ref ref ref

ref

ref ref

e s

M e C e e s s
A X

f



   





−

− + 
 
− − − + −

 
=

 
 
  

 (45) 

1

2

0

( )

0



−



 
 

=
 
  

n n

n n

B X M  (46) 

Define the new infinite horizon integral cost function to be minimized is 

1 1
( , ) ( )

2 2



= +
T T

T

t

J X u X Q X u Ru d  (47) 

where 

0

0 0

 
=  

 
T

Q
Q  (48) 

In order to guarantee the stability in optimal control design, we can consider the class 

of “Admissible Policy” described in [29], [30]: 

Definition 1 [29], [30] (Admissible Policy): A control input ( )X  is call as 

admissible in term of (47) on U , if ( )X  is continuous on U  and the affine system (43) was 

stabilized by this control signal ( )X  on U  and ( )J X  is finite for any X U . 

The optimal control objective can now be considered finding an admissible control 

signal *( )X  such that the cost function (47) associated with affine system (47) is minimized. 

According to the classical Haminlton-Jacobi-Bellman (HJB) equation theory [32], the optimal 

controller *( )u X  and equivalent optimal cost function *( )V X  are derived as: 

*
* 11 ( )
( ) ( )

2

− 
= −



T
T V X

u X R B X
X

 (49) 

( )
* *

* * * * *1 1
, , ( ) ( ) 0

2 2

  
= + + + = 

  

T T

T

V V
H X u A X B X u X Q X u Ru

X X
 (50) 

However, it is hard to directly solve the HJB equation as well as offline solution 

requires complete knowledge of the mathematical model. Thus, the simultaneous learning 
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based online solution is considered by using Neural Networks to represent the optimal cost 

function and the equivalent optimal controller [32]: 

( ) ( ) ( )= +T

vV X W X X   (51) 

* 1 ( )1
( ) ( )

2

−
    

= − +          

TT

T v X
u X R B X W

X X


 (52) 

where  NW  is vector of unknown ideal NN weights, N  is the number of neurons, 

( ) NX  is a smooth NN activation function, ( )v X  is the function reconstruction 

error. The objective of establishing the NN (51) is to find the actor/critic NN updating laws 
ˆ

aW , ˆ
cW  to approximate the actor and critic parts obtaining the optimal control law without 

solving the HJB equation (more details see [32]). Moreover, the smooth NN activation 

function is chosen depending on the description of manipulators (see Section 2.5). In [32], the 

Weierstrass approximation theorem enables us to uniformly approximate not only *( )V X  but 

also 
*( )



V X

X
 with ( )v X , 

( )
0


→



v X

X


 as → N . Consider to fix the number N , the critic 

ˆ ( )V X  and the actor ˆ( )u X  are employed to approximate the optimal cost function and the 

optimal controller as: 

ˆ ˆ( ) ( )= T

cV X W X  (53) 

11 ˆˆ( ) ( )
2

−  
= −  

 

T

T

au X R B X W
X


 (54) 

The adaptation laws of critic ˆ
cW  and actor ˆ

aW  weights are simultaneously 

implemented to minimize the integral squared Bellman error and the squared Bellman 

error hjb , respectively. 

*
* *

ˆ 1 1ˆ ˆˆ ˆ ˆ, , , ,
2 2

    
= − = + +   

   

T T T

hjb c T

V V
H X u H X u W X Q X u Ru

X X
   (55) 

where ˆ ˆ( , ) ( )


= +


X u A Bu
X


  is the critic regression vector. Similar to the work in 

[32], the adaptation law of Critic weights is given: 

ˆ
1

= −
+

c c hjbT

d
W k

dt


 

 
 (56) 

where  , ck  are constant positive gains, and 
 N N  is a symmetric estimated gain 

matrix computed as follows: 

0; ( ) (0)
1

T

c sT

d
k t I

dt


     

 

+= − = =
+

 (57) 

where 
+

st is resetting time satisfying min 1 0 1{ ( )} ,t      . This work ensures ( )t  

is positive definite and prevents the covariance wind-up problem [32]. 

1 0( )I t I      (58) 
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The actor adaptation law can be described as: 

( ) ( )11
2

ˆ ˆ ˆ ˆ ˆ

1

− 
= − − − −

 +

T
Ta

a a c hjb a a c
T

kd
W BR B W W k W W

dt X X

 


 
 (59) 

It is necessary to guarantee of PE conditions of the critic regression vector in using 

this developed algorithm. Unlike linear systems, where PE conditions of the regression 

translates to sufficient richness of the external input, there is no verifiable method exists to 

ensure PE regression translates in nonlinear regulation problems. To ensure PE qualitatively, 

an exploratory signal ( )n t  consisting of sinusoids of varying frequencies is added to the 

control in the first time of learning process. 

Remark 3: The approximate/adaptive reinforcement learning (ARL) control law 

(Actor) and approximately optimal cost function (Critic) are obtained in (54) and (53), 

respectively. Based on the optimization principle, the updated law of Actor and Critic are 

carried out as in (59) and (56). Compared with the optimal control law in [1], the ARL control 

algorithm has the advantage in that it is able to handle for general performance index. The 

convergences of estimated actor/critic weights ˆ
aW  and ˆ

cW  depend on the PE condition of 

1


+

N

T



 
 in [32]. Unlike the work in [32], this algorithm do not mentioned the 

identifier design and focuses on the manipulator control design. Moreover, the learning 

technique in adaptation law (59) and (56) is different from data-driven online integral 

reinforcement learning in [29], [30]. It is worth noting that a clear functionalized exploratory 

signal as well as clear initial conditions of the system is described in this work instead of 

random variables, which clarifies the learning process and contributes to the comparison of 

different approaches. These will be described in Section 2.5. In order to develop this adaptive 

reinforcement learning for manipulator systems in the trajectory tracking control problem, it is 

necessary to consider the manipulator dynamic as affine systems (43).  

Thus, the control design (39) is finalized by integrating the estimation of ,= +f d  

which is designed based on the time-varying RISE framework [1]. 

The proposed time-varying RISE structure is presented as in Section 2.2.2 

0( ) ( (.) 1) ( ) ( ( ) 1) (0) ( )s st K s t K t s t = + − + +  (60) 

0( 1) (.) ( ) sgn( ( ))s

d
k s t s t

dt
  = + +        (61) 

In summary, the control input is described as 

u n = − +  (62) 

Remark 4: In early works [9], the optimal control design was considered for 

uncertain/disturbed mechanical systems by the RISE framework. The tracking control 

objective of this optimal control law is satisfied by appropriate assumptions 3-5 [9]. However, 

it should be noted that the work in [9] is extended by integrating adaptive reinforcement 

learning in the trajectory tracking problem with the consideration of non-autonomous 

systems, which are not directly applied the adaptive reinforcement learning. The proposed 

control scheme in [9] only considered the optimal control in the special case of cost function, 

which leads to the optimal control problem was easily implemented by using the formula of 

Kim and Lewis [9] for this special case. However, it is worth emphasizing that the method of 

Kim and Lewis in [9] is not able to carry out for general case. Compared with the proposed 
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controller in [1], RISE based uncertainties/disturbance estimation has the advantage in that it 

is able to combine with adaptive reinforcement learning algorithm for HJB equation to deal 

with general performance index. Moreover, this work deals with optimal control problem (41) 

for the general performance index (42) required the appropriate algorithm being adaptive 

reinforcement learning (ARL) for HJB equation. Additionally, due to the non-autonomous 

property of model (41), it is not able to directly carry out the model (41) by ARL strategy. 

Therefore, we proposed the transform method to obtain the modified autonomous system (11) 

developed by ARL algorithm. On the other hand, it should be noted that authors in [32] 

considered an online ARL-based method for a first-order continuous-time nonlinear 

autonomous system without any external disturbance. However, unlike the work in [32], a 

disturbed manipulator is described by a second-order continuous-time nonlinear systems (33). 

Therefore, in order to employ ARL strategy, the sliding variable is proposed in this work to 

reduce the order of manipulator model.  

Remark 5: Moreover, this paper improve the standard RISE framework by 

implementing time-varying nonlinear functions, which generalizes the control problems. 

Including the above-mentioned time-varying feedback gains in the standard equation of a 

RISE controller may boost the controller's global tracking efficiency and robustness to 

changes in system parameters. It is also important that the nonlinear functions' structure is 

easy enough to incorporate in real-time experiments. 

2.5 SIMULATION RESULTS 

2.5.1 Simulation Setup 

This section describes the evaluation of the performance of the proposed controllers 

through simulation tests. Both the original RISE and the proposed time-varying RISE 

methods with ARL were implemented on the two-link robot manipulator. A comperison 

between the two employed controllers is studied in the next sessions. 

A 2-DOF planar robot manipulator system, which is modeled by Euler-Lagrange 

formulas (33). In the case of 2-DOF planar robot manipulator systems ( 2)n = , the above 

matrices in (33) can be represented as follows: 

( )

( )

( )

1 2 2 3 2 2

3 2 2 3

4 1 5 1 2

5 1 2

2 2 2 2 2 1 2

2 2 1

(

2 cos cos
( ) ,

cos

cos cos
( ) ,

cos

sin sin
, )

sin 0

M

C

G

     


   

    


  

      
 

  

+ + 
=  

+ 

 + +
=  

+ 

 − − +
=  

 

      (63) 

where , 1...5i i =  are constant parameters depending on mechanical parameters and 

gravitational acceleration. In this simulation, these constant parameters are chosen as  

1 2 3 4 55, 1, 1, 1.2, .g    = = = = =       (64) 

The simulation scenario was considered to validate the performance of proposed 

controller as follows: 

The time-varying desired reference signal is defined as  3 ( ) 3 ( )
T

ref sin t cos t =  with 

the vector of disturbances is given as ( )  50 ( ) 50 ( )
T

d t sin t cos t=  For the control objective 
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of general cost function, the optimal control problem is implemented with the arbitrary 

positive definite symmetric matrices in cost function (47) as: 

40 2 4 4

2 40 4 6 0.25 0
,

4 4 4 0 0 0.25

4 6 0 4

Q R

− 
 

−   = =   −  
 

− 

     (65) 

Moreover, due to the stability description of sliding surface, the design parameters in 

sliding variable 1 1 1( )s t e e= +  are chosen to satisfy that 1

n n   is a constant positive 

definite matrix: 

1

15.6 10.6

10.6 10.4


 
=  

 
         (66) 

For the purpose of stability of the closed system as well as uncertainties/disturbances 

estimation, the remaining control gains in original RISE framework are chosen in (25) as: 

60 0 100 0
, , 5

0 60 0 100
sk 

   
= = =   

   
       (67) 

and the time-varying RISE parameters as in (28), (29), and (30) 

1

2

0

20

10.9, 0.05

5

100 0
,

0 100

24 0
,

0 2
1 5,

4
. 1.3

sk 





 



 
=  

 

 
= 

=

=
 

=

=

=

     (68) 

The gains in Actor-Critic learning laws are selected guaranteeing (56)-(59) as 

1 2800, 1, 0.01, 1.c a ak k k= = = =        (69) 

On the other hand, according to [1], the consideration of V in (51) can be calculated 

precisely as 

( ) ( )2 2 2 2 2

1 1 2 2 3 3 2 3 4 3 4 2 42 4 3 2.5 cos cos 0.5V x x x x x x x x x x x = − + + + + + +   (70) 

Although we can choose the arbitrary ( )X in (51). However, for the comparison 

between result from experiences and result in (70), it leads to that the ( )X  was chosen as 

( ) ( )2 2 2 2 2

1 1 2 2 3 3 2 3 4 3 4 2 4( ) , , , , cos , , cos ,
T

X x x x x x x x x x x x   =       (71) 

According to (29), exact value of ˆ
cW  in (53) and ˆ

aW  in (54) are 

 2 4 3 2.5 1 1 1 0.5
T

W = −       (72) 

In the simulation, the covariance matrix is initialized as  

( )(0) diag 100 300 300 1 1 1 1 1 =      (73) 

All the NN weights ˆ ˆ,c aW W  are initialized as  
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 

 

ˆ (0) 0.6 0.1 0.7 0.5 0.5 0.5 0.7 0.6

ˆ (0) 0.6 0.2 0.2 0.9 1 1 0.4 0.2

T

c

T

a

W

W

=

=
    (74) 

and the states and the its first time derivative are initialized as 

 

 

(0) 0.5 0

(0) 0.9 0.8

T

T

q

q

=

=
         (75) 

To ensure PE qualitatively, an exploratory signal consisting of sinusoids of varying 

frequencies is added to the control for the first 25 seconds after 35 seconds of simulation time. 

 

 2

2 2

2 2

2

1

1 40( ( 25 ) (35 ) ( 20 ) (3 ))

( ) 40( (26 ) (29 ) (20 ) (4 ))

( ) ( ) ( )

( )

T
n

sin t cos t sin t cos t

n t sin t

t

cos t sin t cos t

t n n t

n t − + −

=

=

= +

     (76) 

In order to quantify the relevance of the control algorithm, we need to define a certain 

performance index. One of our main objectives is to enhance the precision and increase the 

tracking accuracy of robot through the proposed controller. An accuracy evaluation tool 

frequently used to evaluate differences between a desired trajectory and a measured one is the 

Root-Mean-Square Error (RMSE) criterion. It can quantify approximately the error between 

the desired trajectory and the actual one traversed by the robot. 

( )2 2

1,1 1,2

1

1
( ) ( )

N

i

RMSE e i e i
N =

= +        (77) 

where 
1,1 1,2,e e  denote the joints tracking errors. N  is the number of the collected 

samples through the whole trajectory. 

In order to estimate the energy consumption for each controller at high dynamic 

operating conditions, the input-torques-based criterion is proposed as follows. 

2

1 1

( )
N

T i

i j

E j
= =

=           (78) 

where the control efforts TE  is the total summation of the absolute value of the input 

torques delivered by the two actuators. 

To determine the convergence error of the trainning process, we calculate the 

differences between trained weights and precise weights. 

ˆCE W W= −           (79) 

The next session will quantitatively and visually demonstrate the simulation results 

and comparison between the two methods. 

2.5.2 Result Analysis 

Table 1 Control performance evaluation for both controllers  

 
Original Optimal 

RISE 

Optimal Time-Varying 

RISE 
Comments 
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Weights 

2.0000    2.0000 

-4.0003   -4.0000 

3.0002    3.0000 

2.5000    2.5000 

1.0000    1.0000 

1.0000    1.0000 

1.0000    1.0000 

0.5000    0.5000 

2.0339    2.0000 

-4.0396   -4.0000 

2.9719    3.0000 

2.5011    2.5000 

1.0007    1.0000 

0.9996    1.0000 

0.9997    1.0000 

0.5002    0.5000 

Less precise, acceptable 

CE 0.0003 0.0592 

RMSE 0.3214 0.3264 1.56% worse, acceptable 

TE  7.0056e+06 4.4316e+06 36.74% better 

 

Table 1 notes some explicit information to compare the original RISE and the 

proposed time-varying RISE methods with ARL were implemented on the two-link robot 

manipulator. 

In general, their weight convergences in approximating value function using neural 

network are all excellent. The weights within the original optimal RISE approach converges 

precisely to the solution in (72) while the proposed method shows less precise but acceptable 

final weight values. 

Regarding tracking errors RMSE, the original method produces just 1.56% better 

result than the novel one. Following the reference trajectory shown in Figure 5, the joint 

tracking errors for both controllers are registered and plotted in Figure 6. Particularly, Figure 

5 and Figure 6 explain that time-varying RISE -based ARL controller produces larger 

overshoot with smaller oscillatory frequency at transcient time. It is worth noting that the 

proposed method also accelerates settling time of the system and guarantees stable zero 

tracking errors, which is significantly better than the original RISE -based ARL controller. 

The total RMSE indexes are nearly similar for both controllers. 

Another important note is the great improvement in terms of energy consumption 

which is a 36.74% reduction with the novel method.  

Because of the extended nonlinear feedback gains and their different behavior, the 

proposed time-varying RISE -based ARL control clearly outperforms the original RISE 

control in terms of precision and efficiency.  
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Figure 5 Tracking trajectories of the two controllers 

 

Figure 6 Tracking errors of the two controllers 

 

Figure 7 Cost function value of of the two controllers 

The proposed time-varying RISE optimal controller results in better cost function 

value through time, which can be seen from Figure 7. In contrast, there is an unstable rise at 2 

second in the cost value produced by the standard strategy.  
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Figure 8 Estimation of the two controllers 

 

Figure 9 Actor weights of the two controllers 

 

Figure 10 Critic weights of the two controllers 

Figure 8 demonstrates the improved estimation performance of novel approach 

towards uncertainties and disturbances during the exploration and learning process. After that, 

the estimation of both two methods towards uncertainties and disturbances is brilliant. 
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The convergence processes of actor and critic weights in training neural network are 

shown from Figure 9 and Figure 10. While the original controller leads to faster weight 

convergence, the proposed time-varying RISE -based control method reduces overshoot 

phenomenon. 



Báo cáo công trình sinh viên nghiên cứu khoa học năm học 2020-2021 

  

 

III. CONCLUSION 

This study addresses a robust optimal control method for a class of uncertain nonlinear 

systems with unknown disturbances. In this framework, after defining sliding variable, an 

online adaptive reinforcement learning (ARL) is presented to achieve the optimality. Actor-

critic neural networks (NNs) is considered to approximate the Hamilton–Jacobi–Bellman 

equation. Based on the robust integral of the sign of the error (RISE) method, 

uncertain/disturbed components of the systems are estimated, which guarantees the trajectory 

tracking objective. Moreover, this work proposes a new time-varying RISE which is 

combined with ARL structure in order to obtain improvements. Simulation results on two-link 

robot manipulator demonstrate the performance of the proposed robust optimal control 

scheme. 

This work can be further extended by considering the completely unknown dynamics 

of the system in off-policy integral reinforcement learning with the proposed time-varying 

feedback RISE controller. Moreover, co-operative control of multiple robot manipulators is 

also an interesting topic where ARL-based control algorithm can be implemented. 
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