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Abstract: Incorporating task-specific priors within a policy or network archi-
tecture is crucial for enhancing safety and improving representation and gener-
alization in robotic control problems. Differentiable Model Predictive Control
(MPC) layers have proven effective for embedding these priors, such as con-
straints and cost functions, directly within the architecture, enabling end-to-end
training. However, current methods often treat the solver and the neural network
as separate, independent entities, leading to suboptimal integration. In this work,
we propose a novel approach that co-develops the solver and architecture uni-
fying the optimization solver and network inference problems. Specifically, we
formulate this as a joint fixed-point problem over the coupled network outputs and
necessary conditions of the optimization problem. We solve this problem in an it-
erative manner where we alternate between network forward passes and optimiza-
tion iterations. Through extensive ablations in various robotic control tasks, we
demonstrate that our approach yields richer representations and more stable train-
ing, while naturally accommodating warm starts, a key requirement for MPC.

Keywords: differentiable optimization, deep equilibrium model, model predictive
control

1 Introduction
Incorporating task-specific priors within the policy training pipeline is often beneficial for robotic
control problems. These priors give the system designer additional control and flexibility while de-
signing the system and play a vital role in enhancing safety, improving representation, and boosting
generalization. Previous approaches to policy learning have explored various methods to embed
such priors, including reward/loss shaping [1], incorporating constrained optimization layers within
the policy inference pipeline [2, 3], adding parallel/post-hoc safety checks/controllers [4], adver-
sarial training [5], and domain randomization [6].

Differentiable Model Predictive Control (MPC) layers [2] have emerged as a promising ap-
proach [7, 8, 9] to embed such priors. This method integrates MPC as a differentiable layer within
neural network architectures, embedding the constraints and cost functions directly into the network
architecture. Importantly, they allow us to preserve the interpretability and safety guarantees asso-
ciated with traditional MPC while providing a general framework applicable to a diverse range of
robotic control problems. Moreover, it allows for test-time modifications of the MPC problem and
facilitates online adaptation – a critical feature in dynamic environments.

However, differentiable MPC layers treats the optimization solver as a black box, overlooking its
unique characteristics. This simplification, while convenient, overlooks the unique characteristics of
MPC solvers. Unlike typical NN layers, MPC solvers are implicit, iterative, and prone to issues like
ill-conditioning and discontinuities, potentially destabilizing training. Their structure also enables
efficient warm-starting, often underutilized in current frameworks.
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Figure 1: We propose DEQ-MPC layers (right) as a direct improvement over differentiable MPC
layers (left). These layers offer increased representational power, smoother gradients, and are more
amenable to warm-starting. DEQ-MPC layers formulate the network inference (θ) and trajectory
optimization (τ ) as a joint fixed-point problem, solving them in an alternating iterative manner,
instead of the single-shot sequential inference used in differentiable MPC setups. This approach uses
the network to adapt the solver inputs, θi, based on the current optimizer state, τi, enabling a richer
feedback process. The specific example in the figure shows a trajectory tracking example, where the
robot observations are fed to the system. The network predicts the waypoints θi (solver inputs). The
solver solves the tracking problem to spit out solved trajectories τi to track the waypoints θi.

To address these limitations, we propose Deep Equilibrium Model Predictive Control (DEQ-MPC),
a novel approach that unifies the optimization solver and the neural network architecture. Instead
of treating the optimization layer as just another layer within the network, we formulate a joint in-
ference and optimization problem as shown in figure 1, where we treat the network inference and
the optimization problem as a unified system and jointly compute a fixed point over them. Thus,
the network outputs can now depend on the solver iterates and vice-versa, thereby, allowing a tight
coupling between the two. The fixed point is computed by alternating between the network forward
pass (conditioned on the most recent optimizer iterate) and the optimization solver iterations (condi-
tioned on the most recent network outputs) until the joint system reaches an equilibrium (hence the
name DEQ-MPC, i.e, Deep Equilibrium Model Predictive Control).

This joint inference/optimization framework also allows us to explore several interesting aspects
of the solver and architecture design. Specifically, for the optimization solver, we implement an
augmented Lagrangian (AL) solver which works well with warm-starting and is robust at handling
arbitrary non-linear constraints. This is important for the joint fixed point process as it allows us
to change the optimization parameters (i.e, network outputs, θi) between successive optimization
iterates. For the architecture, we experiment with parameterizing the network architecture itself as a
Deep Equilibrium model (DEQ), a type of implicit neural network that computes the outputs/latents
as a fixed point of a non-linear transformation. It can be seen as an infinite depth network which
applies the same layer an infinite number of times eventually reaching a fixed point in the out-
puts/latents. This iterative fixed point finding procedure blends nicely with the equilibrium/fixed
point finding nature of the overall system. We observe nicer stability properties when using a DEQ
as the network architecture when going to more complicated settings.

This unified approach results in several key benefits: First, it enables richer representations by al-
lowing the network to adapt its features/outputs depending on the solver state. Second, it allows
us to naturally compute smoother gradients during training, facilitating more stable and efficient
learning. Third, it inherently accommodates warm-starting, leveraging the recurrent nature of MPC
to improve computational efficiency and solution quality. DEQ-MPC thus offers a more robust and
flexible framework for integrating optimization-based control with deep learning.

The primary contributions of this work are as follows: (1) We introduce DEQ-MPC, a novel frame-
work to integrate MPC layers within deep networks. (2) Through extensive ablations, we show
that this unified approach results in richer representations, improved gradient flow, and enhanced
suitability for warm-starting, compared to standard differentiable MPC methods. (3) We propose a
training setup specifically for streaming MPC applications that leverages warm-starting across time
steps. (4) We provide empirical evidence demonstrating the advantages of DEQ-MPC on trajectory
prediction and tracking problems across various continuous control tasks that require strict con-
straint satisfaction both on simulation and hardware. While the paper focuses on MPC to ground
our methods in concrete problems, we believe that the insights and techniques would generalize to
a much broader class of constrained optimization layers and applications.

2



2 Related Work
Differentiable optimization layers were introduced as a means to embed convex optimization prob-
lems [10, 11] as differentiable units within deep networks. Recent works have extended the range of
optimization and fixed-point problems that can be made differentiable [12, 13, 14, 15]. Since their
introduction, they have been applied to a variety of robotics problems, such as state estimation [16],
SLAM [17, 18], motion planning [19, 13] and control [2, 3] for applications such as autonomous
driving [7, 20], navigation [8, 9], and manipulation [13]. We specifically look at differentiable MPC
problems building off of work such as [2, 3, 21, 22, 23, 13].

However, incorporating MPC (and optimization) layers within deep networks often comes with its
own set of challenges. The bi-level problem can often be very non-convex resulting in the local
gradient direction being mis-aligned with the desired global update direction [13, 2]. The gradient
landscape often has discontinuities resulting in undesirable gradient artifacts [24, 25]. Furthermore,
the problem structure can also result in very high variance in gradients [26]. It’s often challenging to
incorporate warm-starting techniques as the problem parameters change with each problem instance
[27] resulting in long inference and solve times. The network predicted constraint parameters can
often be infeasible [28], resulting in undefined problem solutions or gradients. Some modelling
assumptions in the optimization layer are often not faithful to the real data causing model mismatch
problems [29]. Addressing these challenges is key for practical adoption of optimization layers.

Our approach formulates network inference and optimization as a joint equilibrium problem, ad-
dressing representation, gradient smoothness, and warm-starting. This relates to prior work us-
ing joint inference/optimization for inverse problems [30] and SLAM/pose estimation [31, 17, 18],
which focused on unconstrained non-linear least squares. We generalize this concept to constrained
optimization, specifically MPC, and explicitly compare against standard differentiable optimization
to highlight the benefits of the joint approach.

3 Background
3.1 Differentiable Model Predictive Control
Model Predictive Control (MPC) solves a finite-horizon optimal control problem at each time step :

τ∗0:T = argmin
τ0:T

∑
t

Cθ,t(τt)

subject to x0 = xinit, xt+1 = fθ(τt), hθ(τt) ≤ 0, t = 0, . . . , T,

(1)

where τt = (xt, ut), Cθ,t is the cost, fθ the dynamics and hθ ineq. constraints (e.g. safety con-
straints, joint limits, etc.). This problem is typically solved using non-linear optimization techniques.

Differentiable MPC computes gradients of the solution τ∗ w.r.t. solver inputs θ using the implicit
function theorem (IFT) on the Karush-Kuhn-Tucker (KKT) conditions of equation 1 [2]. Let z∗ =
(τ∗, λ∗, ν∗) be the primal-dual solution to the KKT conditions F (z, θ) = 0 of equation 1. The
corresponding gradient can be computed as:

∂z∗

∂θ
= −

(
∂F

∂z

)−1

· ∂F
∂θ

, (2)

3.2 Deep Equilibrium Models
Deep Equilibrium Models [32] are a class of implicit deep learning models that compute the output
as a solution to a fixed point problem. Specifically, given an input x ∈ X , computing the forward
pass in a DEQ model involves finding a fixed point z ∈ Z , such that

z⋆ = dϕ(z
⋆, x), (3)

where, dϕ : Z × X → Z is some parameterized layer conditioned on input x, Z denotes the
hidden state or outputs of the network which we are computing the fixed point on, X denotes the
input space, and ϕ denotes the parameters of the layer. Computing this fixed point (under proper
stability conditions) corresponds to the “infinite depth” limit of repeatedly applying the function
z+ := dϕ(z, x) starting at some arbitrary initial value of z (typically 0).
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4 Method
4.1 Problem Grounding through Trajectory Prediction and Tracking
We begin by grounding our discussion in a simple trajectory prediction and tracking example. This
setting will also serve as the default configuration for most of our subsequent experiments.

Given system dynamics f and a dataset of optimal trajectories across different initial and envi-
ronmental conditions, we learn a policy using imitation learning problem while respecting several
constraints. We model this policy as consisting of two components. The first is a neural network
NNϕ that predicts the waypoints to be tracked and other environment parameters θ0:T for the next T
time steps given the current state xinit and some observations o:

θ0:T = NNϕ(xinit, o). (4)

The second is an MPC solver that solves the trajectory tracking problem to compute dynamically
feasible trajectories τ0:T that track the waypoints while satisfying the required constraints:

τ∗0:T = argmin
τ0:T

∑
t

∥xt − θt∥2Q + ∥ut∥2R

subject to x0 = xinit, xt+1 = fθ(τt), hθ(τt) ≤ 0, t = 0, . . . , T.

(5)

In a standard differentiable-MPC setup these two components are executed sequentially, one after
the other as shown in figure 1. The outputs of the system, τ∗0:T are used to compute a loss, ℓ(τ∗0:T ),
such as a supervised L1 loss with some expert trajectory demonstrations τ exp

0:T . The loss is then
optimized using a stochastic gradient optimizer to learn the network parameters.

4.2 DEQ-MPC
4.2.1 The Inference Problem, Architecture and Solver
MPC solvers are implicit layers and hence iterative. Using a single θ estimate throughout the solver
iterations is inefficient, especially for non-linear optimization problems. To address this, DEQ-
MPC modifies the single-shot inference problem described in equations 4 and 5 into a joint in-
ference/optimization problem over the network outputs and the optimizer iterates. This approach,
illustrated in Figure 1, allows us to condition the network outputs (solver inputs, θ) on the optimizer
state τ and vice versa. This is expressed as a single constrained optimization problem:

τ∗0:T , θ
∗ = argmin

τ0:T ,θ

∑
t

Cθ,t(τt) (6)

subject to x0 = xinit, xt+1 = fθ, hθ(τt) ≤ 0, (7)
θ = NNϕ(xinit, o, τ0:T ), t = 0, . . . , T, (8)

where the last constraint expresses the neural network inference as an equality constraint. Typical
non-linear optimization solvers [33, 34] or bi-level optimization solvers [35, 36, 37] struggle with
this constraint due to the nastiness of the resulting constraint Jacobians. We propose to solve this
problem using the alternating direction method of multipliers (ADMM) algorithm [38], alternating
between (1) solving the MPC optimization problem (with fixed θ), equations 6 and 7 using the
augmented Lagrangian (AL) method and (2) the constraint projection step, equation 8 (i.e, the neural
net inference to compute θ with fixed τ ). Specifically, we alternate between the following two
operations for N iterations or until convergence,

θi = NNϕ(xinit, o, τ
i−1), (9)

τ i = MPC-mθi(xinit, τ
i−1), (10)

where MPC-m performs m solver iterations using the AL algorithm, with the most recent estimate
θi from the network and warm-started using τ i−1 from the last MPC-m solve. The initial value
τ0 are initialized at xinit and zero controls across time steps. We refer to each alternating step as
a DEQ-MPC-iteration, with the super-script, i, denoting the iteration count. This is illustrated in
figure 1. This iterative inference/optimization approach enables the network to provide an initial
coarse θ estimate and iteratively refine it based on the solver’s progress.
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Choice of N, m: Empirically, we find that updating the MPC inputs θ every two AL iterations
(m = 2) is sufficient to obtain most of the gains. Furthermore, DEQ-MPC typically converges within
N = 6 DEQ-MPC-iterations with m = 2 and thus we use these values for all our experiments. We
discuss the considerations around the convergence of this alternating problem in section A.2.

Network architecture. We explore two architectural choices for NNϕ with distinct trade-offs:

(1) DEQ-MPC-NN: NNϕ is a standard feedforward network. While this is simple and often effective,
it has limitations. The iterative nature of the DEQ-MPC framework can lead to instabilities when us-
ing a standard feedforward architecture, particularly in complex settings. Moreover, this architecture
is somewhat computationally inefficient, as it doesn’t leverage the similarity of computations across
successive iterations – each iteration starts anew without reusing previous computational results.

(2) DEQ-MPC-DEQ: NNϕ itself is a DEQ network [32]. Specifically, the network inference step
in equation 9 is itself computed via an inner fixed-point solve: z⋆i = dϕ(z

⋆
i , xinit, o, τi−1). followed

by θi = gϕ(z
⋆
i ). Note that this fixed point solve is distinct from the equilibrium computations

in the DEQ-MPC-iterations discussed earlier and is simply computing the network inference (i.e
constraint projections) from equation 9. Furthermore, we can also warm-start these inner fixed
points across successive DEQ-MPC-iterations given they are likely to be similar, i.e, zi can be
conveniently initialized with zi−1 while computing the fixed points. This allows us to re-use the
network computation from earlier iterations.

MPC-m solver. We implement an Augmented Lagrangian (AL) solver [39, 40] for MPC-
m, chosen for its robustness to non-linear constraints (handled as penalties) and suitability for
warm-starting. The penalty-based approach also allows us to use the unconverged iterations
as smoothed/relaxed versions of the problem to handle discontinuities (more discussion in sec-
tion 4.2.2). Our solver implementation is friendly with both CPU and GPU.

Specifically, for the general MPC problem in equation 1, we form the following Lagrangian

L(τ, λ, η, µ) =
∑
t

Cθ,t(τt)+λThθ(τ)+ηT kθ(τt, xt+1)+
µ

2
∥hθ(τt)

+∥22+
µ

2
∥kθ(τt, xt+1)∥22, (11)

where hθ(τt) ≤ 0 are the inequality constraints and kθ(τt, xt+1) = 0 are all the equality constraints,
λ and η are the corresponding Lagrange multipliers and µ > 0 the penalty parameter. hθ(τt)

+

represents an element-wise clipping at zero max(0, hθ(τt)). The details of the AL method are
described in algorithm 1 in the appendix.

Moreover, with MPC-m, we only perform m AL iterations per DEQ-MPC-iteration i, initializing all
the AL variables (τ i, λi, ηi, µi) at iteration i from the state at the end of iteration i− 1.

4.2.2 Loss and Gradients
Augmented Lagrangian gradients. Previous work [24, 25] has shown that computing gradients
through optimization problems can be problematic due to inherent discontinuities in the landscape
and have proposed various relaxations to mitigate this problem. We take inspiration from these
approaches and propose a relaxation for use with our solver.

We compute input gradients ∇θ for the AL solver by applying IFT (Eq. 2) on the Lagrangian :

τ∗ = −(∇2
τL)−1∇τθL = −(Q+ µATA+ µGTG)−1∇τθL. (12)

where, A and G are the constraint Jacobians of the equality and inequality constraints respectively.
At convergence, the value of µ is very high. This results in the components of the gradient in the
column space of the linearized active constraints getting squished to zero. Thus, when the constraints
are non-linear/discontinuous, and the optimizer converges to some arbitrary active sets, the gradients
computed using equation 12 are also arbitrary/meaningless. To address this, we compute losses on
multiple intermediate iterates τ i∀i ∈ [1, N ] from the DEQ-MPC iterations, not just the final one
τN . Gradients computed through earlier iterates (with smaller effective µ) provide smoother signals,
acting as a relaxation. Later iterates (with larger µ) provide more accurate gradients as the solver
converges. This creates a natural curriculum during training. We discuss the details of gradient
computation for the DEQ network in the appendix.
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Losses. We supervise the policy outputs with the expert trajectories for the following T steps. We
use an L1 loss over the output states against the corresponding ground truths for supervision. As
discussed before, we compute losses on multiple intermediate iterates and backpropagate gradients
through all of them. The resulting objective for a single instance is

ℓ(xexp
0:T , x

1:I
0:T ) =

∑
t=0:T

∑
j=1:I

∥xexp
t − xi

t∥1, (13)

where xexp
0:T are expert demonstrations and x1:I

0:T are the states output by the model across I iterations.

4.2.3 Warm-Starting and Streaming

Warm-starting. Warm-starting MPC by initializing the current solve with the previous time step’s
solution is vital for efficiency [41, 37, 42]. Standard MPC warm-starting involves shifting the previ-
ous solution τ̂t−1:T+t−1 to initialize the solve for τt:T+t. The AL method accommodates this very
elegantly. We initialize τ with the shifted estimate τt:T+t = [τ̂t:T+t−1, τ̂T+t−1], where τ̂T+t−1 is
assumed to be a reasonable estimate for τT+t, reset the dual variables λ and η to zeros and set the
initial value of ρ = ρmax/10

N∗m−i where (N ∗m− i) is the total number of AL iterations we expect
to perform after warm-starting (see Appendix A.5 for additional explanations).

In standard differentiable-MPC setups, the network infers the MPC solver inputs θ afresh at each
successive time step. These estimates can often be arbitrarily far from the previous estimates, thus
requiring a significant number of AL iterations post warm-start. On the other hand, in DEQ-MPC,
the network is conditioned on the previous optimizer iterate. This allows us to train the network to
predict consistent θ estimates across time-steps by training it specifically for the streaming setting
as described below.

Streaming training. We customize the training procedure to suit the warm-started streaming
setup. Given a sampled ground truth trajectory τ exp

0:T+L, we break the inference problem into a
two step process. First, we solve for τ0:T given xexp

0 as usual without any warm-starting. Then, we
successively solve L problems for τt:T+t for t = 1 . . . N with the iterates warm-started with solu-
tion from the previous solve, τt−1:T+t−1. Then we simply compute losses on all the intermediate
optimization iterates (from both steps) and supervise them using the corresponding ground truths as
described in section 4.2.2. For all of our experiments we use L = 2.

5 Experiments
We demonstrate the effectiveness of our proposed modifications across a variety of simulated robotic
control tasks. Additionally, we present ablation studies to highlight the specific advantages of DEQ-
MPC regarding representation, training stability, and warm-starting. Finally, we validate our ap-
proach with hardware experiments on a Crazyflie drone.

Setup. We use the trajectory prediction and tracking problem (section 4.2.1) as our default exper-
imental setting. For each task, we generate ground truth trajectories using expert policies; details
on dataset generation and partitioning are in Appendix.Models are trained via supervised learning
to predict the next T steps (T=5 unless specified) given the current state. We evaluate models using
validation error (for general optimization layer effectiveness) and average returns over 200 receding-
horizon rollouts (for MPC policy performance).
Variants/Baselines. Throughout the experiments, we compare our methods (DEQ-MPC-*)
against their corresponding differentiable MPC counterparts (Diff-MPC-*):

DEQ-MPC-DEQ: Our method using a DEQ network architecture.

DEQ-MPC-NN: Our method using a standard feedforward network.

Diff-MPC-NN: Standard differentiable MPC with a feedforward network predicting θ in one shot,
solved via MPC, with loss on the converged iterate via IFT.

Diff-MPC-DEQ: Same as Diff-MPC-NN but using a DEQ network architecture.

Network Architecture. Given the sequential nature of the task, we use a temporal convolution-
based architecture for both feedforward (NN) and DEQ networks. Details are in Appendix.
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5.1 Comparison Results

Figure 2: Performance comparison across various simulated
environments, with values normalized against the expert re-
turn for each environment. Higher score is better.

We evaluate the methods on a se-
ries of underactuated continuous
control tasks with constraints: Pen-
dulum, Cartpole, Quadrotor, QPole,
QPoleObs, and QPoleDynObs.
QPole is a quadrotor with a pole
hanging (task is to swing up the pole
while reaching a goal). QPoleObs
adds obstacles in the environment
that need to be avoided (using obsta-
cle avoidance constraints in MPC).
QPoleDynObs makes these obstacles dynamic. Detailed descriptions of envs is provided in A.6.3.

The policies are trained and executed in the streaming setting (section 4.2.3) with a single DEQ-
MPC-iteration (DEQ-MPC variants)/two AL iterations (Diff-MPC variants) with warm-starting
across environments, except in the QPoleObs env, where all methods needed two DEQ-MPC-
iterations (DEQ-MPC)/four AL iterations (Diff-MPC). (Note that each DEQ-MPC iteration itself
also does exactly two AL iterations with m = 2). Figure 2 shows the normalized returns obtained
by each policy for each task averaged across policies trained with three dataset splits. The returns
are normalized against the expert policy (1.00). We observe that the DEQ-MPC variants consistently
perform better than the Diff-MPC counterparts across most environments. While DEQ-MPC-DEQ
performs consistently well across all environments, we observed that DEQ-MPC-NN occasionally
got unstable (e.g. resulting in its sub-par performance in the Cartpole balancing task).

5.2 Ablations
We explore three aspects: representation capabilities, training stability, and warm-startability, pri-
marily using the QPole environment unless specified.

5.2.1 Representation Ablations

Figure 3: Generalization

We demonstrate DEQ-MPC’s enhanced representation capabili-
ties. First, DEQ-MPC variants scale more effectively with dataset
size and model capacity. Second, they show less performance
degradation as constraint complexity increases. Additional repre-
sentation ablations are in Appendix.
Generalization. Figure 3 shows validation error versus train-
ing set size. DEQ-MPC models show benefits even with smaller
datasets and continue improving with more data, unlike Diff-
MPC variants which saturate. This suggests better representation
power. Networks trained without MPC layers (DEQ, NN) also
saturate, indicating benefits arise from solver-network interplay.

Figure 4: Network capacity

Network capacity. Figure 4 shows validation error versus net-
work hidden state size (128 to 1024). We observe that the DEQ-
MPC variants benefit more from the higher network capacity than
the Diff-MPC variants which saturate beyond hidden size of 512.
This shows that the DEQ-MPC variants are better able to utilize
additional model capacity and thus are more amenable to scaling.

Figure 5: Constraints hardness

Constraint hardness. We add 40 obstacles to QPole with col-
lision avoidance constraints (∥xd − xo∥22 ≥ r2) added to MPC,
where xd = COM of drone and xo = COM of obstacle. Figure 5
shows the returns obtained by different models as we vary the
obstacle radius r from 0.20 to 0.50. DEQ-MPC’s performance
advantage persists as we add additional constraints and even in-
creases as constraints become harder (larger r). (Note: These runs
are without warm-starting to isolate representational effects).
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5.2.2 Training Stability

Figure 6: Gradient instability

Gradient niceness. Figure 6 presents the validation errors dur-
ing training for DEQ-MPC-DEQ (where we compute losses across
multiple intermediate AL iterates and backpropagate) and Diff-
MPC-DEQ (where gradients are computed only with the final AL
iterate). Diff-MPC-DEQ shows significant instability when tight
control limits are added (postfix 1), unlike DEQ-MPC-DEQ. Both
are stable without these constraints (postfix 0). This highlights
the benefit of using intermediate iterates for smoother gradients.

Figure 7: Cost parameter
sensitivity

MPC input sensitivity ∇θ. Figure 7 shows validation errors as
we vary velocity coefficients in the MPC cost Q (lower values →
worse conditioning → higher problem sensitivity). We observe
that this leads to more training instability in models. The valida-
tion errors plotted represent the ’best’ performance of the model
throughout training (typically just before the training became un-
stable). DEQ-MPC-DEQ remains stable for the largest range of
values. Even DEQ-MPC-NN, although best performing with well
conditioned Q, quickly gets very unstable as conditioning worsens.

5.2.3 Warm-Starting Ablations

Figure 8: Warm-starting

Figure 8 shows returns as we vary the number of DEQ-MPC/AL it-
erations allowed per step in the streaming/warm-started evaluation
(section 4.2.3, L=2). Note that, each DEQ-MPC iteration does ex-
actly two AL iterations (m = 2). As the computational budget (iter-
ations per step) decreases, the performance gap between DEQ-MPC
and Diff-MPC widens significantly. DEQ-MPC’s iterative nature
makes it inherently better suited to leverage warm-starting effec-
tively, given that the warm-starting required at each new time-step
is very similar to the warm-starts done across DEQ-MPC iterations.

5.3 Hardware Experiments Table 1: Hardware results

Method Average
Return

Failure
Rate (%)

Diff-MPC-NN 0.82 (±0.15) 33.33
Diff-MPC-DEQ 0.86 (±0.12) 33.33
DEQ-MPC-NN 0.93 (±0.03) 33.33
DEQ-MPC-DEQ 0.93 (±0.04) 0.0

We further validate our approach on the Crazyflie nano-
quadrotor platform, deploying policies trained in simula-
tion for navigation to the origin amidst 40 virtual static
obstacles. The policies were evaluated over 3 trials on
same robot with different initializations. Table 1 summa-
rizes the hardware results, which corroborate simulation
findings. DEQ-MPC variants achieved significantly higher returns with zero failures/collisions, out-
performing the less reliable Diff-MPC policies. More details are in Appendix.

6 Discussions
Our experimental results highlight several key advantages of DEQ-MPC over differentiable MPC
layers. The performance gap between DEQ-MPC variants and Diff-MPC becomes increasingly ap-
parent as task complexity increases, whether through harder constraints, longer planning horizons,
or increased problem sensitivity. A particularly promising aspect of DEQ-MPC is its favorable scal-
ing behavior. Unlike Diff-MPC variants which show signs of performance saturation, DEQ-MPC
models continue to improve with increasing dataset size and network capacity. This suggests poten-
tial for exploiting scaling laws in robotics applications. Furthermore, DEQ-MPC’s effectiveness in
warm-starting scenarios, requiring fewer augmented Lagrangian iterations while maintaining perfor-
mance, offers significant practical advantages for real-world deployment. This advantage was also
evident in our hardware experiments, where DEQ-MPC methods demonstrated superior reliability.
Interestingly, there exist trade-offs even between the DEQ-MPC variants. While DEQ-MPC-NN
performs slightly better on average in simulation, DEQ-MPC-DEQ remains stable across a wider
range of conditions compared to DEQ-MPC-NN.
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7 Limitations and Future Work

Several important directions remain for future work. While our method is designed to be general,
our current evaluation focuses primarily on trajectory tracking and prediction problems. Exploring
the applicability of DEQ-MPC to a broader class of MPC and constrained optimization problems,
both within and beyond robotics, would be valuable. Additionally, we have primarily only tested
the models in the imitation learning setting in this paper. Their applicability to a broader class
of reinforcement learning problems is less clear given the complicated architecture could result
in higher variance during training. Investigating whether the representational richness of DEQ-
MPC can be leveraged effectively beyond the imitation learning setup such as in reinforcement
learning settings to directly learn constrained optimal policies could be a promising line of future
work. Moreover, our current MPC implementation currently only handles relatively continuous
dynamics and constraints. Dealing with more complicated dynamics such as contacts would require
a more careful MPC implementation which we leave for future work. Finally, given the strong
performance in constraint handling, exploring DEQ-MPC in safety-critical scenarios such as human-
robot interaction settings would be an interesting direction for future research.
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A Appendix

A.1 Additional Ablations

We provide more ablation experiments to demonstrate the representational benefits of DEQ-MPC.

Figure 9: Time horizon ablations

Representational hardness. We look at the effect of
increasing horizon length as it serves as a good proxy for
various metrics such as problem conditioning, dimension-
ality, practical utility etc. Specifically, figure 9 shows the
validation errors obtained by each model after training as
we vary the horizon length from T = 3 to T = 12. We
observe that the gap between the validation errors of the
iterative models and the non-iterative ones is preserved
even as we increase the size of the problem. Further, we
observe that the representational benefits of the DEQ net-
work in DEQ-MPC-DEQ starts becoming more obvious
in the longer horizon problems as the difference in valida-
tion error between DEQ-MPC-DEQ and DEQ-MPC-NN
increases. This illustrates the effectiveness of the infinite
depth in DEQs helping with capturing the longer context.

Figure 10: AL iteration ablations

Validation error with iteration count. Figure 10
shows the validation error across the Augmented La-
grangian iterations. As discussed earlier, the Diff-MPC
variants here use the same predicted θ throughout itera-
tions while the DEQ-MPC variants use ADMM and thus
update the optimization inputs θ using the network infer-
ence every two AL iterations. Interestingly, the gap in
validation error starts accruing from the early AL itera-
tions itself. But gap gets pronounced after the fourth AL
iteration as the Diff-MPC variants saturate while DEQ-
MPC continues to improve thanks to the repeated updates
to the problem inputs.

A.2 Notes on Convergence

Our treatment of the joint system as a DEQ
allows us to borrow results from [43][44] to
ensure convergence of the fixed point itera-
tion. Specifically, if we assume the joint Ja-
cobian of the ADMM fixed point iteration is
strongly monotone with smoothness parame-
ter m and Lipschitz constant L, then by stan-
dard arguments (see e.g., Section 5.1 of [45]),
the fixed point iteration with step size α <
m/L2 will converge. However, going from
the strong monotonicity assumption on the joint
fixed point iterations to specific assumptions on
the network or the optimization problem is less
straightforward. But, in practice a wide suite of techniques have been used to ensure that such fixed
points exist and can be found using relatively few fixed point iterations.

In fact, for all of our experiments, we that the problem converges within 6 ADMM iterations once
trained. As an example, we show the convergence behavior of the joint optimization problem of

14



the trained DEQ-MPC-DEQ model in the QuadPole-obstacle avoidance environment in Figure A.2.
We find that the maximum constraint residuals for both equality (dynamics) and inequality (obstacle
avoidance and control limits) constraints, as well as the relative fixed-point residuals of the DEQ
network and the DEQ-MPC iterates converge to < 1e−3 tolerance within 6 DEQ-MPC iterations.
We observe similar plots for the other systems we tested as well with the model often converging
faster in the easier systems.

In fact, across all our experiments, we barely faced any issues with convergence of the optimization
problem itself as long as we followed the best practices while designing the network architectures
(used appropriate skip connections and normalization layers as is common in DEQ architectures
[32, 44, 46, 31]) and the AL solver (using a merit function-based line search for monotonic con-
vergence and appropriate solver initializations as described earlier). However, when dealing with
more complicated (more ill-conditioned/non-convex) problems, it is conceivable that we might face
convergence issues. In such cases, we might advise increasing the number of inner AL iterations as
well as outer DEQ-MPC iterations to ensure convergence but we did not face those issues at least
for the problems we tested.

A.3 Computational Cost and Inference Time

We’d like to stress that the inference times during the MPC rollouts are very similar across our
models and the baselines given that all of them perform one network inference and one inner op-
timization loop (2 AL iterations). For instance, the total inference times for our DEQ-MPC-DEQ
(86.6ms) and the Diff-MPC-DEQ baseline (88.8ms) are comparable on our machine. Similarly, the
NN variants, DEQ-MPC-NN (71.2ms) and Diff-MPC-NN (61.6ms), also show similar timings. The
solver clearly consumes the majority of the time (72ms-75ms for DEQ variants and 58-68 for NN
variants). But the solver code is currently a PyTorch implementation and not optimized for speed.
Production solver implementations can be made much faster but require significant systems effort
which we leave for future work given that is not the focus of our work. However, even with our
implementation, we’re able to run the policies at > 10 Hz frequency as mentioned in our hardware
experiments. The additional time consumed by the solver is often worth it in some applications
given that it gives additional flexibility in handling distribution shifts, online problem specification
changes and constraints especially in safety critical domains, etc.

A.4 DEQ network gradients

Computing gradients through the fixed point iteration in a DEQ model typically requires using the
implicit function theorem equation 2, which involves computing a linear system solve. However,
recent work [46, 47] has shown that the approximations of the gradient by simply assuming an
identity Jacobian or differentiating through the last few iterations of the fixed point iteration using
vanilla backpropagation is equally/more effective while being computationally cheaper. We adopt
this approach. Specifically, we run the function a couple more times after computing the fixed point,
and simply backpropagate through those last couple of iterations to compute the parameter gradients.

A.5 Augmented Lagrangian Algorithm

Specifically, given the general MPC problem in equation 1, we form the following Lagrangian

L(τ, λ, η, µ) =
∑
t

Cθ,t(τt)+λThθ(τ)+ηT kθ(τt, xt+1)+
µ

2
∥hθ(τt)

+∥22+
µ

2
∥kθ(τt, xt+1)∥22, (14)

where hθ(τt) ≤ 0 are the inequality constraints and kθ(τt, xt+1) = 0 are all the equality constraints
(including the dynamics and initial state constraints), λ and η are the corresponding Lagrange mul-
tipliers and µ > 0 is the penalty parameter. hθ(τt)

+ represents an element-wise clipping at zero
max(0, hθ(τt)). The augmented Lagrangian method then proceeds by alternating between updating
the primal variables (τ), dual variables (λ, η) and the penalty parameter (µ) as shown in algorithm 1.
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Warm starting notes: We discussed in the warm-starting section that we warm-start the primal
variables τ but not the dual variables. We instead reset them to zeros. Dual variables are tricky to
warm-start in the AL-MPC setup for two reasons : (1) the active sets often change across consecutive
time-steps especially when the optimized state at t + 1 differs significantly from the next observation.
This becomes prominent when deploying the policies in the real world due to the sim-2-real gap.
(2) When warm-starting AL, the penalty ρ is often re-initialized to a smaller value which means that
the relative scale of the multiplier updates λ := λ + ρ ∗ res are much smaller than the multiplier
magnitudes making the initial updates ineffective. Thus, it’s generally considered a safer practice to
reset the multiplier values instead of warm-starting them.

Algorithm 1 Augmented Lagrangian Solver for MPC-m
Require: Initialize τ0, λ0, η0, µ0 (warm-started using previous DEQ-MPC-iteration, parameters),

γ > 1
1: Set j = 0
2: repeat
3: Primal update: Solve the unconstrained minimization problem using the Gauss-Newton

method
τ j+1 = argmin

τ
L(τ, λj , ηj , µj)

4: Dual update: Update the Lagrange multipliers

λj+1 = max(λj + µjhθ(τ
j+1), 0)

ηj+1 = ηj + µjkθ(τ
j+1)

5: Penalty update: Update the penalty parameter

µj+1 = γµj

6: j = j + 1
7: until Stopping criterion is met (or j = m iterations)
8: return Final solution τm, λm, ηm, µm

A.6 Experimental Setup and Environment Details

This section provides further details on the experimental methodology, including dataset generation,
partitioning, model training objectives, evaluation procedures, and comprehensive descriptions of
the continuous control environments used in our study.

A.6.1 Dataset Generation, Partitioning, and Training

Trajectory generation. For each experimental task, we first generated a dataset of ground truth
trajectories. These trajectories represent near-optimal solutions to the respective control problems.
They were generated using ’expert’ policies trained via CGAC [48], a state-of-the-art on-policy
reinforcement learning algorithm. This ensures that the supervised learning models are trained on
high-quality, dynamically feasible motion data relevant to the task.

Data partitioning. The generated trajectory data for each environment was partitioned into a train-
ing set, comprising 90% of the trajectories, and a validation set, comprising the remaining 10%. This
partitioning was used for both model training and hyperparameter tuning.

Supervised learning objective. The core task for the models evaluated in this paper is trajectory
prediction (for agent and optionally for obstacles when dealing with dynamic obstacles). Models are
trained via supervised learning to predict the next T steps of a trajectory (st+1, ..., st+T ) given the
current state st as input. Unless otherwise specified in the experiments, the default prediction hori-
zon was set to T = 5 steps for all environments. This setup corresponds to the problem formulation
discussed in Section section 4.2.1 of the main paper.
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A.6.2 Evaluation Metrics

We employed two distinct methods to evaluate the performance of the compared models:

1. Validation error: To assess the models’ general capability as optimization layers within
differentiable pipelines (e.g., for use in control or system identification tasks), we measured
their prediction performance on the held-out validation set. Lower validation error indicates
better generalization and prediction accuracy.

2. MPC policy performance (average returns): To evaluate the models’ suitability specifi-
cally for the control setting, we integrated them as feedback policies within the simulation
environments or real system. Using a receding horizon control approach, the policy derived
from the model selects actions at each step. The performance was quantified by the average
cumulative reward (average return) achieved over 200 independent rollouts (episodes) for
each task. Higher average returns indicate better closed-loop control performance.

A.6.3 Environment Descriptions

We evaluate the proposed methods on a series of underactuated continuous control tasks with state
and control constraints. These environments are commonly used benchmarks in control and rein-
forcement learning research.

Pendulum:

– Task: The standard pendulum swing-up task, where the goal is to swing an underactuated
pendulum to an upright position and maintain it there.

– Dynamics: State dimension n = 2 (angle, angular velocity), control dimension m = 1
(torque).

– Constraints: Control input (torque) is limited to ±5 units. These are modeled as inequality
constraints (|u| ≤ 5) in the MPC formulation.

– Dataset Size: 300 trajectories.

Cartpole:

– Task: The standard cartpole swing-up task. The objective is to swing the pole attached to
a cart via an unactuated joint to an upright position and keep it balanced while controlling
the cart’s horizontal force.

– Dynamics: State dimension n = 4 (cart position, cart velocity, pole angle, pole angular
velocity), control dimension m = 1 (horizontal force on the cart).

– Constraints: Control input (force) is limited to ±100 units. Modeled as inequality con-
straints (|u| ≤ 100) in the MPC formulation.

– Dataset Size: 300 trajectories.

Quadrotor:

– Task: Navigate a quadrotor drone from a randomly initialized position and orientation to
the origin (0, 0, 0) in 3D space. The model is based on the dynamics described in [49].

– Dynamics: State dimension n = 12 (position, orientation (quaternion), linear velocity,
angular velocity), control dimension m = 4 (motor thrusts).

– Constraints: The thrust for each of the four motors is constrained to the range [11.5, 18.3]
units. These are formulated as inequality constraints (11.5 ≤ ui ≤ 18.3 for i = 1, . . . , 4)
in the MPC problem.

– Dataset Size: 2000 trajectories.

QPole (Quadrotor-Pole):

– Task: This environment increases the complexity of the Quadrotor task by attaching a
free-rotating pole to the center of mass (COM) of the quadrotor. The goal is to guide the
quadrotor to the origin while simultaneously ensuring the attached pole is swung up to an
upright position. This task is highly dynamic and challenging due to the coupled dynamics.
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– Dynamics: State dimension n = 14 (Quadrotor state + pole angles and angular velocities),
control dimension m = 4 (motor thrusts).

– Constraints: Same control limits as the Quadrotor environment (ui ∈ [11.5, 18.3]).
– Dataset Size: 2000 trajectories.

QPoleObs (Quadrotor-Pole with Obstacles):

– Task: Builds upon the QPole task by introducing 40 static spherical obstacles into the
environment. The quadrotor must reach the origin with the pole swung up, while also
avoiding collisions with all obstacles.

– Dynamics: State dimension n = 14, control dimension m = 4.
– Constraints: Includes the motor thrust constraints (ui ∈ [11.5, 18.3]) and collision avoid-

ance constraints. Collision avoidance is enforced by requiring the quadrotor’s COM posi-
tion xd to maintain a minimum distance r from the center of each obstacle xo,i. These
are modeled as inequality constraints in the MPC layer: (∥xd − xo,i∥22 ≥ r2) for all
i = 1, . . . , 40. By default, the minimum safe radius is r = 0.5 units, unless specified
otherwise.

– Dataset Size: 2000 trajectories.

QPoleDynObs (Quadrotor-Pole with Adversarial Dynamic Obstacles):

– Task: Further increases the complexity of the QPoleObs task by making the 40 obstacles
dynamic (i.e., they move over time according to predefined or reactive trajectories). The
objective remains to guide the quadrotor to the origin with the pole swung up, while dy-
namically avoiding collisions with the moving obstacles.

– Dynamics: State dimension n = 14, control dimension m = 4. Obstacle positions xo,i(t)
are now time-varying and adversarial. The obstacles adversarially move towards the lin-
early projected position of the quadrotor in 5 time steps.

– Constraints: Includes the motor thrust constraints (ui ∈ [11.5, 18.3]). The collision avoid-
ance constraints are now time-dependent, requiring (∥xd(t) − xo,i(t)∥22 ≥ r2) for all ob-
stacles i at all times t during the trajectory planned by the MPC. The default minimum safe
radius is r = 0.5 units.

– Dataset Size: 2000 trajectories.

A.7 Hardware Experiments

To further validate our approach, we conducted experiments on physical quadrotor hardware. We
deployed policies, learned through imitation of a pre-trained Reinforcement Learning (RL) expert,
onto a Crazyflie 2.1 micro-quadrotor. The task involved navigating to the origin amidst 40 virtual
static obstacles. Figure 11 shows the CrazyFly flying in the real-world assuming the virtual obstacles
exist and the traversed trajectory visualized in the sim overlayed with the virtual obstacles.

Simulation and policy imitation. The expert RL policy was initially trained in simulation to
navigate a quadrotor from an arbitrarily initialized position to the origin in an environment with 40
obstacles of radius 10cm. We then used this expert policy to generate demonstration trajectories
for imitating the DEQ-MPC and Diff-MPC variants, as described in the main paper. The virtual
obstacles in the hardware experiments were represented by fixed spheres of radius=10cm, identical
to those in the simulation.

Experimental setup. The DEQ-MPC or Diff-MPC model ran offboard on a ground station PC.
State estimation for the Crazyflie was provided by an OptiTrack motion capture system operating
at 100Hz. We used the most recent state estimate from the OptiTrack system directly, without
additional filtering, to assess robustness to raw sensor data.

Control loop. The policies (DEQ-MPC or Diff-MPC) were executed in a receding horizon fash-
ion. The system receives state estimates from the Mocap system, executes the policy on the PC, and
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Figure 11: Left : The CrazyFlie flying with the DEQ-MPC-DEQ policy in the real-world assuming
the virtual obstacles exist. Right : The CrazyFlie trajectory from the real world overlayed in the
simulator with virtual obstacles.

sends the resulting next state commands to the Crazyflie’s onboard tracking controller at a frequency
of 10 Hz. The policy is executed (at 10Hz) in a receding horizon fashion with warm-starting from
the solution at the previous time step. The prediction horizon for the policies is T = 5 steps as with
most other sim experiments. Onboard Crazyflie tracks the specified desired state with a lower level
Mellinger controller.

Evaluation protocol. Each policy variant was evaluated over 3 trials. For consistency across pol-
icy comparisons, these trials commenced from the same 3 distinct, randomly chosen initial positions
of the Crazyflie. A trial was considered a ”failure” or ”collision” if the Crazyflie physically crashed
or if its estimated position intersected with any of the virtual obstacles during the run. The returns
for each run were computed by aggregating the rewards until the first instance of a failure or colli-
sion or until max time steps. Each policy was executed for a maximum of 200 time-steps (at a 10 Hz
control rate). The average return and failure rates are reported in Table 1 in the main paper.

Observations and discussion of results. As detailed in Table 1, the hardware experiments cor-
roborated our simulation findings. The DEQ-MPC variants (DEQ-MPC-NN and DEQ-MPC-DEQ)
achieved higher average returns compared to the Diff-MPC variants. Notably, DEQ-MPC-DEQ
achieved a zero failure rate, successfully completing all trials without collisions or crashes. While
DEQ-MPC-NN also showed strong performance, it experienced a collision on one of the runs. We
observed that the OptiTrack MoCap measurements, while generally accurate, occasionally exhib-
ited noise and transient fluctuations. Qualitatively, the DEQ-MPC based policies, particularly DEQ-
MPC-DEQ, demonstrated greater robustness to these real-world imperfections. This robustness
manifested in smoother flight paths and a better ability to maintain stability and track the desired
trajectory despite state estimation noise, ultimately contributing to their superior performance in
terms of both higher average returns and lower (or zero) failure rates. The Diff-MPC policies ap-
peared more susceptible to these disturbances, leading to less reliable performance and a higher
incidence of failures.

A.8 Network Architecture Details

The trajectory prediction and tracking problem is inherently sequential, as the network takes the
current system state as input and predicts the future T states to be tracked (and for dynamic obstacles
the future T states of the obstacles to be avoided). Given this sequential nature, we employ a
temporal convolution-based architecture for both the DEQ and the feedforward network used in our
experiments.
Inputs. For the DEQ-MPC variants, we have 2 inputs: (x0, the initial state and xi

1:T , the current
state estimates from the optimizer). For the Diff-MPC variants, we only get x0 as input. But we
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repeat it T times and concatenate it ([x0] × T to obtain a temporal input that can be fed to the
temporal convolutional network described below. Further, for experiments with dynamic obstacles,
we also provide the xo estimate of the obstacles at the current step and predict their positions for the
next T steps.
Feedforward network. We use a Temporal Convolution Network (TCN) architecture. We first
compute input embeddings for the trajectory by computing a node embedding at each time-step
with a node encoder (Linear-LayerNorm-ReLU). We then concatenate the node embedding of x0 to
all time-steps and a corresponding time embedding to indicate their respective time-steps. These are
then passed through a series of four temporal convolution residual blocks (Conv1D-GroupNorm-
ReLU) before computing the output with a final temporal Conv1D layer. The output at each time
step represents the δxt = xt − x0.

For experiments with dynamic obstacles, we use a separate obstacle TCN, that predicts the future
trajectories of the obstacles. The obstacle TCN takes the current obstacle and agent state as input and
predicts δxo

t = xo
t−xo

0. Further, the graph embeddings from the obstacle GCN are also concatenated
to the input embeddings for the agent TCN above.

More details are available in the code attached with the supplementary.
DEQ network. We again use a Temporal Convolution Network architecture. We have three sepa-
rate blocks here, namely, input injection layer I , fixed point layer d and output layer g. We compute
the forward pass by first computing the fixed point on the latents:

z∗ = dϕ(z
∗, Iϕ(x0, x̂1:T )) (15)

and then compute the outputs using gϕ(z
∗). The input injection layer is similar to the feedforward

network. We compute a node embedding at each time-step with a node encoder (Linear-LayerNorm-
ReLU) and then concatenate the node embedding of x0 and a corresponding time embedding to
all time-step node embeddings. This sequence of concatenated node embeddings are then passed
through a TCN block (Conv1D-GroupNorm-ReLU) to get the final input embeddings that are fed to
the fixed point layer.

The fixed point layer: The input embeddings are passed through a TCN block (Conv1D-
GroupNorm-ReLU) and added to a temporally arranged latent variable z. The resulting embeddings
are passed through another TCN block (Conv1D-GroupNorm-ReLU) with a residual connection, to
obtain the output z. These operations combined represent dϕ. We compute the fixed point of this
layer using a standard Anderson acceleration fixed point solver [50, 51] to get the resulting z∗.

The output layer gϕ(z∗) is again a TCN block (Conv1D-GroupNorm-ReLU-Conv1D) that computes
the computes the output δxt = xt − x0.

For experiments with dynamic obstacles, we again use another TCN to predict future obstacle tra-
jectories. The key difference here is that the obstacle TCN also takes the current obstacle trajectory
prediction and agent trajectory prediction estimates as input to predict the equilibrium updates for
future time steps using a similar setup to the agent TCN DEQ described above. Again, the hidden
states from the node embeddings of the obstacle TCN at each time step are pooled and also given
back as input to the agent TCN at the respective time steps.

More details are available in the code attached with the supplementary.
Default hyperparameters We use a hidden size of 256 for the Pendulum, 512 for Cartpole, 512
for Quadrotor, 1024 for QPole, QPoleObs and QPoleObsDyn for the agent TCN and unless other-
wise specified. During training, we use a batch size of 200 for all environments. The hidden size for
the obstacle TCN is one fourth the agent TCN hidden dim.

20


	Introduction
	Related Work
	Background
	Differentiable Model Predictive Control
	Deep Equilibrium Models

	Method
	Problem Grounding through Trajectory Prediction and Tracking
	DEQ-MPC
	The Inference Problem, Architecture and Solver
	Loss and Gradients
	Warm-Starting and Streaming


	Experiments
	Comparison Results
	Ablations
	Representation Ablations
	Training Stability
	Warm-Starting Ablations

	Hardware Experiments

	Discussions
	Limitations and Future Work
	Appendix
	Additional Ablations
	Notes on Convergence
	Computational Cost and Inference Time
	DEQ network gradients
	Augmented Lagrangian Algorithm
	Experimental Setup and Environment Details
	Dataset Generation, Partitioning, and Training
	Evaluation Metrics
	Environment Descriptions

	Hardware Experiments
	Network Architecture Details


