
TinyMPC: A Model Predictive Control Framework
for Embedded Applications

Khai Nguyen, Anoushka Alavilli, and Sam Schoedel

Abstract— We introduce a novel model predictive control
(MPC) framework designed for running on low-resource hard-
ware. Our approach utilizes an Augmented Lagrangian-iLQR
optimization method to handle trajectory optimization and
constraint management. The framework is optimized to run on
several microcontrollers, including the Teensy 4.1, STM32F401,
and the Crazyflie 2.1 drone, which uses an STM32F405
processor. We detail the algorithm implementation, hardware
optimization techniques, and provide a comparison of the
framework’s runtime performance with other state-of-the-art
solvers. Additionally, we present the results of testing the
framework on the Crazyflie 2.1 drone, which shows that it
can solve the full-state quadrotor problem with a minimum
frequency of 16Hz, while a complementary LQR is implemented
to stabilize the drone at 50Hz.

I. INTRODUCTION

In recent years, significant strides have been made in
the field of robotics, particularly in deep learning (DL)
and reinforcement learning (RL), resulting in a range of
improved capabilities and applications [5] [2] [3]. However,
these advanced techniques often demand significant comput-
ing resources, which can pose challenges for many robotic
applications. This stands in contrast to a significant portion
of robotics that utilizes embedded systems with severely
limited computing resources. These systems include palm-
sized toy robots like the Crazyflie quadrotor [4] and the
Petoi Bittle quadruped [9], as well as mission-critical robots
like NASA’s Mars Perseverance rover [10]. The Crazyflie
and Bittle employ affordable and accessible commercial
microcontrollers, such as families of STM32 and Teensy,
respectively. Meanwhile, the Perseverance rover relies on
RAD750, a radiation-hardened version of the PowerPC 750
processor from the previous century. Clearly, the need for
resource-constrained robotic applications is widespread. Op-
erating within a tight computational budget, these embedded
systems require innovative approaches to enable the efficacy
of advanced techniques.

MPC is a popular method for controlling complex robotic
systems, which has achieved remarkable success in recent
years due to the miniaturization of powerful computational
platforms [6], [12], [7]. This method formulates the control
problem into an optimization problem with specific objec-
tives and constraints, enabling the achievement of desired
behaviors while accounting for complex dynamics, torque
limits, and obstacle avoidance. Like every other control mod-
ule, the computation time from sensor feedback to control
signals must be small enough to stabilize the system without
any significant latency. Hence, these optimization problems
must be solved at high frequencies (tens to hundreds of

Hertz) on the robot, a reliable and efficient solver algorithm
is the core of successful MPC implementation.

For optimal control problems, convex optimization offers
the advantage of finding a global optimal solution, or de-
termining whether a solution exists, even in the presence
of constraints. Numerous numerical techniques have been
implemented in both open-source and proprietary software,
including popular solvers such as SNOPT, Ipopt, OSQP,
KNITRO, and ALTRO. Despite their effectiveness, limited
computing resources pose a challenge for these solvers
and their model predictive control (MPC) implementations.
Many MPC approaches employ direct transcription methods,
which involve large matrices and can be computationally
expensive. To address this issue, high-performance MPC
implementations use specialized sparse-matrix routines to
exploit the problem structure and efficiently leverage warm-
start strategies. One such implementation is ALTRO [11],
which employs an Augmented Lagrangian Iterative LQR
approach and has demonstrated excellent performance

While some MPC implementations have been designed for
FPGAs and microcomputers like Jetson, they are primarily
focused on process plants and not highly dynamic systems
like robots. Additionally, some MPC implementations rely
on Matlab/Simulink to generate C code. However, some of
these implementations have not yet been applied to real-
world control applications and are only tested on small
problems through simulation. Therefore, there is a need for
MPC implementations that can be deployed on resource-
constrained hardware and have been tested in real-world
control applications for highly dynamic systems like robots.

We present TinyMPC, a novel and lightweight solution
that offers a user-friendly interface for implementing Model
Predictive Control (MPC) on embedded systems with ex-
tremely limited resources. To achieve this, we build on
the foundation established by [1] and [11] to develop an
efficient and effective Augmented Lagrangian-based solver in
the C programming language. The implementation includes
optimized linear algebra routines, variable step sizes, and
infinite horizon Linear Quadratic Regulator terminal cost.
Our solution not only provides a speedy solver but also a
complete framework that can be readily deployed for a range
of control applications.

Our contributions to the field of optimal control are
three-fold. Firstly, we have developed a highly efficient and
extensible open-source optimal control solver in C. Secondly,
we have created a user-friendly MPC interface that simplifies
the setup and compilation of our solver on various hardware
platforms. Finally, we have provided benchmark results to



demonstrate the efficacy of our approach and a hardware
demonstration to showcase its practicality.

This paper is organized as follows. In Section II, we
provide background information on optimal control and
introduce the LQR method. In Section III, we present our
Augmented Lagrangian LQR algorithm for solving optimal
control problems. Section IV details the implementation of
the TinyMPC framework. In Section V, we discuss the results
of our experiments. Finally, we summarize our work and
suggest directions for future research in Section VI.

II. BACKGROUND

A. Notation

We denote x ∈ Rn as the state and u ∈ Rm as the control
input. For a finite horizon length N , we will have N states
and N − 1 control inputs and denote, for example, the state
at the kth time step as xk.

B. Nominal Trajectory

At a high level, the objective in trajectory optimization is
to track a pre-specified nominal trajectory while obeying a
given a set of state and input constraints. Assume we are
interested in a time period T , which can be discretized by
N intervals of dt. We have the following:

X̄ = {x̄0, . . . , x̄N}, which is our nominal state trajectory,
and Ū = {ū0, . . . , ūN−1}, which is our nominal input
trajectory.

These can be obtained from a higher-level planner using
sample-based, grid-based, or optimization-based methods.
These trajectories may or may not be dynamically feasible
(i.e. satisfies or does not satisfy (1)) and may or may not
obey all input constraints.

C. Linearized Dynamics

We define general, nonlinear dynamics of a system as
follows:

xk+1 = f(xk, uk) (1)

From this, we can define the difference between the actual
and nominal trajectory as δxk = xk − x̄k, δuk = uk − ūk.

We locally approximate the nonlinear dynamics with a
first-order Taylor expansion with respect to the nominal
trajectory

xk+1 = x̄k+1 + δxk+1 (2)
= f(x̄k + δxk, ūk + δuk) (3)

≈ f(x̄k, ūk) +
∂f

∂x

∣∣∣∣
x̄k,ūk

δxk +
∂f

∂u

∣∣∣∣
x̄k,ūk

δuk (4)

with
Ak ≡

∂f

∂x

∣∣∣∣
x̄k,ūk

, Bk ≡
∂f

∂u

∣∣∣∣
x̄k,ūk

(5)

Then,

x̄k+1 + δxk+1 = f(x̄k, ūk) +Akδxk +Bkδuk (6)

Now, we have two options to represent state and input,
i.e. absolute xk or delta δxk. This will lead to two different

formulations for our optimal control problem as well. In our
implementation, we started with the absolute formulation but
moved to the delta formulation in order to add line search.

Delta formulation:

δxk+1 = Akδxk +Bkδuk + f(x̄k, ūk)− x̄k+1

δxk+1 = Akδxk +Bkδuk + fk
(7)

Absolute formulation:

xk+1 = Akxk +Bkuk + f(x̄k, ūk)−Akx̄k −Bkūk

xk+1 = Akxk +Bkuk + fk
(8)

In both formulations, we denote fk as the affine term in
the linearized dynamics. In (7), a nonzero fk implies the
dynamical infeasibility of the nominal trajectory; otherwise,
it is zero. In (8), fk includes the dynamics linearization error
as well. The dynamics Jacobians Ak and Bk only depend on
nominal trajectory therefore the derived system is basically
linear time-varying and can be precomputed, which reduces
the number of online calculations in our real-time system.

D. Cost Function

The tracking linear-quadratic cost (excluding the mixed
and constant terms) is as follows:

J = ℓf (xN ) +

N−1∑
k=1

ℓ (xk, uk) (9)

=
1

2
(xN − x̄N )⊺Qf (xN − x̄N )

+

N−1∑
k=1

1

2
(xk − x̄k)

⊺Qk(xk − x̄k)

+
1

2
(uk − ūk)

⊺Rk(uk − ūk) (10)

=
1

2
x⊺
NQfxN + q⊺fxN

+

N−1∑
k=1

1

2
x⊺
kQkxk

+
1

2
u⊺
kRkuk + q⊺kxk + r⊺kuk (11)

where qf = −Qf x̄N , qk = −Qkx̄k, rk = −Rkūk

E. Dynamic Programming Problem

Cost-to-go is supposed to be in the linear-quadratic form

Vk(xk) =
1

2
x⊺
kPkxk + p⊺kxk (12)

At terminal state, PN = Qf , pN = qf
Bellman equation:

Vk = min
uk

{ℓ (xk, uk) + Vk+1 (f (xk, uk))}

= min
uk

{Qk (xk, uk)}
(13)



Action-value function:

Qk (xk, uk) =
1

2
x⊺
kQkxk +

1

2
u⊺
kRkuk

+ q⊺kxk + r⊺kuk

+
1

2
(Akxk +Bkuk + fk)

⊺Pk+1(Akxk +Bkuk + fk)

+ p⊺k+1(Akxk +Bkuk + fk) (14)

Group Qk into linear and quadratic terms:

Qk (xk, uk) =
1

2

[
xk

uk

]⊺ [
Qxx Qxu

Qux Quu

] [
xk

uk

]
+

[
Qx

Qu

]⊺ [
xk

uk

] (15)

Qx = qk +A⊺
k(Pk+1fk + pk+1)

Qu = rk +B⊺
k (Pk+1fk + pk+1)

Qxx = Qk +A⊺
kPk+1Ak

Quu = Rk +B⊺
kPk+1Bk

Qux = B⊺
kPk+1Ak = Q⊺

xu

(16)

Apply the necessary optimality condition to achieve opti-
mal control:

0 =
∂Qk

∂uk
= Quuuk +Quxxk +Qu (17)

Problem (13) has a closed-form solution:

u∗
k = −Kkxk − dk

dk = Q−1
uuQu

Kk = Q−1
uuQux

(18)

Plug these back into (14) to get the cost-to-go:

pk = Qx +K⊺
kQuudk −K⊺

kQu −Q⊺
uxdk

Pk = Qxx +K⊺
kQuuKk − 2K⊺

kQux

(19)

All of these result in Riccati recursion (backward pass) to
calculate cost-to-go and control gains. Because the system
is locally linear, we only need to perform one iteration to
obtain optimality.

F. Forward Pass

Following the delta formulation, the forward pass is as
below:

uk ← uk −Kk(x̄k − xk)− dk (20)
xk+1 ← Akxk +Bkuk + fk (21)

III. CONSTRAINED OPTIMAL CONTROL PROBLEM

Up to this point, we have not considered any constraints on
the state x or input u. Real-world systems have many types
of physical or desired limitations. Some popular constraints
are box constraints on the state and input at each time step
(to ensure that the solution is realizable on hardware and to
encourage smoothness in the solution), equality constraints
on the goal state (to ensure that that a desired final position is
reached), and second-order cone constraints to, for example,
enforce thrust limits.

To handle constraints, we use the augmented Lagrangian
method (ALM) which enforces constraints into the cost
function. Generally, our tracking problem is convex, and
a global solution can be found with only one constrained
backward pass. However, multiple iterations are needed to
satisfy dual feasibility.

Below is the pseudo-code of our AL-TVLQR algorithm.

Algorithm 1: Augmented Lagrangian TVLQR

initialization;
for i← 0 to maxIters do

K, k, P, p← ConstrainedBackwardPass;
X,U ← ForwardPass;
CalculateConstraintViolation();
if augmented Lagrangian gradient is zero then

return;
end
UpdateDuals();
UpdatePenalty();
if objective function KKT conditions are met then

return;
end

end

A. Augmented Lagrangian Cost Function

First, consider linear equality and inequality constraints as
follows:

hx
k(x) = Hx

kxk − hx
0k = 0, (22)

gxk(x) = Gx
kxk − gx0k ≤ 0 (23)

hu
k(u) = Hu

k uk − hu
0k = 0, (24)

guk (u) = Gu
kuk − gu0k ≤ 0 (25)

Let’s look at the constrained backward pass. In essence,
the ALM method will add Lagrangian and penalty terms into
the original cost function, turning it into an unconstrained
optimization problem. Interestingly, these linear-quadratic
terms fit nicely into the LQR formulation.

The augmented Lagrangian applies to the action-value
function (assuming only constraints on uk)

Qk(xk, uk, λk, µk)← Qk + λ⊺
khk(uk)

+
1

2
ρhk(uk)

⊺hk(uk) + µ⊺
kgk(uk)

+
1

2
gk(uk)

⊺Iρgk(uk) (26)

Apply the necessary optimality condition to achieve opti-



mal control:

0 =
∂Qk

∂uk
= Quuuk +Quxxk +Qu

+ λ⊺
k

∂hk

∂uk

+ ρhk(uk)
⊺ ∂hk

∂uk
+ µ⊺ ∂gk

∂uk

+ gk(uk)
⊺Iρ +

∂gk
∂uk

(27)

Substitute the linear constraint cases (24) and (25) into
(27) to obtain:

0 = Quuuk +Quxxk +Qu+λ⊺
kHk +ρ(Hkuk−h0k)

⊺Hk

+ µ⊺
kGk + (Gkuk − g0k)

⊺IρGk

= (Quu + ρH⊺
kHk +G⊺

kIρGk)uk +Quxxk

+ [Qu +H⊺
k (λk − ρh0k) +G⊺

k(µk − Iρg0k)] (28)

The modification to the backward pass is as follows:

Qu = rk +B⊺
k (Pk+1fk + pk+1) +H⊺

k (λk − ρh0k)+

G⊺
k(µk − Iρg0k)

Quu = Rk +B⊺
kPk+1Bk + ρH⊺

kHk +G⊺
kIρGk

(29)
Note that the same modification would apply for state

constraint Qx, Qxx and terminal state PN , pN . We may have
mixed state-input constraints as well.

If the constraints are nonlinear, we can linearize them
about the nominal trajectory and obtain the forms (22) and
(25) which fits (27).

B. Dual Updates

Eq. (29) suggests the dual updates as:

λk ← λk − ρh0k, (30)
µk ← max(0, µk − Iρg0k) (31)

Note the subtle difference between AL here and in iterative
LQR (iLQR). In iLQR, one will naturally approximate the
cost with second-order Taylor expansion about the current
trajectory, then group the cost in gradient and Hessian
terms, not precisely like linear and quadratic terms like ours.
Third-rank tensors are ignored. Moreover, one will solve the
backward pass and forward pass iteratively until convergence
so that any mismatch due to nonlinearity can be eliminated.
In (27), constraints have to be in linear form so they can be
substituted and grouped into corresponding terms.

C. Conic Constraints

There is a mathematical background in generalized in-
equality which starts with the conic combination. Typical
inequality like (23) can be seen as a type of cone called
non-positive orthant. In fact, the steps of dual update (31)
can be interpreted as a projection of the new value into the
dual cone (non-positive orthant). Most of the cones we care
about are self-dual. This projection operator helps drive the
duals back to the constraint manifold.

IV. THE TINYMPC FRAMEWORK

A. Jacobian Code Generation

Functions to compute state and control matrices were gen-
erated using Symbolics.jl in Julia by symbolically com-
pute the Jacobians of the given robot’s dynamics function
with respect to the state control variables. These symbolic
functions were converted to C functions. Reference trajecto-
ries were generated using ALTRO and similarly copied into
C code format for use on a microcontroller.

B. Linear Algebra Library

We use the SLAP (Simple Linear Algebra Protocols)
library developed by Dr. Brian Jackson for matrix computa-
tions. SLAP was chosen because it is tested and lightweight
and because of our architectural decision to have as few
dependencies as possible. We modified SLAP, as discussed in
V-A.1, to replace the backend of some of the most commonly
used functions with existing implementations that are much
faster and can be precompiled for use with SLAP.

V. RESULTS

After having verified the correctness of our algorithm by
comparing it with the solution from ALTRO in Julia, we
chose to implement our algorithm on three common and
accessible microcontrollers as a demonstration of the range
of embedded systems on which our solution can run. We
chose to implement our algorithm on a Teensy 4.1, an STM
NucleoF401RE, and an STMF405 on a Crazyflie 2.1 drone,
shown in Fig. 1. The Crazyflie drone is a common research
platform for autonomous and distributed swarm algorithm
research. We chose to use it because it is small and thus has
fast attitude dynamics that we want to show can be stabilized
by TinyMPC.

A. Speed Increases

1) Matrix Library Backend: After profiling our C im-
plementation, we found the algorithm was spending around
77% of its time in the SLAP, the library we used as our
matrix processing backend. Specifically, the algorithm was
in the matrix add and multiply function around 75% of

Fig. 1. Crazyflie drone used for testing.



Fig. 2. MPC runtime vs. horizon length using Eigen as the backend to the
SLAP linear algebra library.

Fig. 3. MPC runtime vs. horizon length using variable sampling times.
The format of the x-axis is [number of steps at dt=0.01, number of steps at
dt=0.04] The final horizon times are all equal to 0.2 seconds but each are
achieved with a different number of knot points.

the time. This function multiplies two matrices, multiplies
them by a scalar, then sums the result with a third matrix
multiplied by a second scalar to produce a final result. To
speed up our implementation, we replaced the original SLAP
implementation with Eigen 3.1 matrices. This adds a new
dependency to our implementation, but since it is added as a
backend to the SLAP library, users can simply download a
precompiled version of SLAP and not need to worry about
downloading and compiling Eigen themselves. Replacing the
SLAP backend with Eigen halved the runtime of our MPC
function, allowing us to run the dynamic bicycle model in
real time (faster than 50Hz) with a horizon length of 4 knot
points. As shown in Fig. 2, this speed increase is still not
enough to run the quadrotor at 50Hz, even with only two
knot points in the horizon.

2) Variable Sampling Time: We take advantage of the
constantly updating nature of MPC and the fact that knot
points farther into the future do not have to be predicted
as accurately as those closer to the current state of the
robot by increasing the time step for later knot points. This
allows the MPC algorithm to cover the same amount of
horizon time using fewer knot points, decreasing runtime
while achieving similar performance. This works primarily

because the fast dynamics of the system need to be stabilized
immediately while obstacle avoidance, which relies more on
computing the position of the robot, generally has slower
dynamics and thus can be computed using a larger time
step. On the quadrotor, this was implemented by linearizing
two dynamics functions about hover, one with the initial
fast time step and one with the slow time step used for
the remainder of the horizon time. Each of the datapoints
in Fig. 3 correspond to combinations of ∆t that equal 0.2
seconds. As can be seen in the graph, it takes 1.1 seconds to
compute one MPC step with a horizon time of 0.2 seconds
and a time step of 0.01 seconds. Replacing the last four time
steps with a single time step of 0.04 seconds, we see that
it now takes only 950 milliseconds to compute one MPC
step. This trend continues linearly down to the extreme case
of four initial steps at ∆t = 0.01 and four more steps at
∆t = 0.04, which takes around 450 milliseconds to solve.
The percentage computation speed increase can be computed
as n0/(n0−n2(∆t2/∆t1−1))100%, where n0 is the number
of steps required to reach the desired horizon time using only
∆t1, and n2 is the number of steps using ∆t2. Similarly,
n1 is the number of steps using ∆t1, but is not required to
compute the relative speed-up from using more steps at ∆t2.

B. Teensy 4.1

The results in Fig. 2 and 3 show results from running
on the STM NucleoF401RE. The F401RE uses a Cortex M4
processor running at a maximum clock frequency of 16 MHz.
The function runtimes from this processor are far too slow
to be run on the Crazyflie quadrotor. The exact same code
was run on a Teensy 4.1 in a fraction of the time, as shown
in Fig. 4. The Teensy 4.1 uses a Cortex M7 chip that, in
our tests, was run at a clock frequency of 600 MHz. This
is the highest natively supported clock frequency that does
not require active cooling. The Teensy ran our MPC code
in under 1 millisecond for each horizon length shown in
the figure. With 130 knot points for the horizon length, the
Teensy ran the function in 20 milliseconds, which is an MPC
runtime frequency of 50Hz. This is the same frequency used
to control the drone using LQR, and is promising given we’re
able to run the Cortex M4 on the Crazyflie at the speed of
the Teensy 4.1.

C. Crazyflie 2.1

Because our MPC algorithm does not yet run fast enough
to control a quadrotor, we opted to solve for the infinite
horizon LQR gains for the model we obtained from Bitcraze,
the developers of the Crazyflie, and implement our own
controller on their software stack. Directly copying the
optimal gain matrix obtained from infinite horizon LQR
caused the drone to exhibit a stable, sinusoidal wobbling
behavior during flight. This wobbling was removed by hand-
tuning the optimal gain matrix. We then generated position
and velocity knot points for a figure-8 trajectory we wanted
the drone to follow. Although the drone did not follow the
trajectory properly, it did stay in the air for the duration of
the trajectory.



VI. CONCLUSION

The hardware results above highlight the computational
complexities of running an MPC algorithm in real-time on
an underpowered micro controller. We have demonstrated
that our algorithm may run in real-time on devices like the
Teensy 4.1 which runs on a Cortex M7 processor running at
up to 1GHz. There is still work to do to demonstrate these
results on power and resource constrained devices such as
the Crazyflie 2.1 running a Cortex M4 chip.

We have not yet reduced the runtime of our algorithm to
the point where it may be run on the Crazyflie’s processor
in real-time, but there are a few things we can implement to
speed up our algorithm.

Our future work is proposed as below:
1) Algorithm: We plan to create a new version of the

solver using ADMM rather than AL to help reduce the
required online computation. ADMM will require fewer
matrix-matrix multiplications (from matrix factorizations),
which is primarily what is slowing down our code.

2) Conic Constraints: We have attempted to incorporate
conic constraint handling, but this is still a work in progress.

3) Model Hierarchy Predictive Control: An additional
method implemented to increase performance is a hierar-
chical dynamics model scheme [8], where the first few time
steps use the full model dynamics and the remainder use
increasingly simplified versions of the robot’s dynamics.
This can be done for similar reasons as variable sampling
time, discussed in V-A.2. Doing this reduces the compu-
tational complexity of the Jacobians for later time steps
which decreases overall runtime. Time steps closer to the
first horizon knot point require higher-accuracy dynamics to
correctly determine the robot’s future state, but later time
steps only need to look at low frequency dynamics since
the higher frequency dynamics will likely be incorrectly
estimated anyway. These low frequency dynamics tend to
be attributed to much simpler models, such as point mass
models, and can be used to determine a subset of the robot’s
state farther into the future, such as its center of mass. Often,
center of mass is all that is required when trying to avoid
obstacles farther into the future.

Fig. 4. MPC runtime vs. horizon length on a Teensy 4.1 running at 600
MHz.

4) Code Generation: Following applications like OSQP,
Simulink, and SLinGen, we would like to be able to generate
C code from a higher level programming language. The
overhead of extra work required to do this pays off in the
form of a much simpler user interface and being able to
optimize for a wide variety of specific platforms using a
single program.

TinyMPC is available at https://github.com/
RoboticExplorationLab/TinyMPC.

REFERENCES

[1] B. Jackson et al. ALTRO-C: A Fast Solver for
Conic Model-Predictive Control. URL: https://
ieeexplore.ieee.org/document/9561438.
(accessed: 5.1.2023).

[2] Laura Smith et al. Learning and Adapting Agile
Locomotion Skills by Transferring Experience. URL:
https://doi.org/10.48550/arXiv.2304.
09834. (accessed: 5.9.2023).

[3] Tuomas Haarnoja et al. Learning Agile Soccer Skills
for a Bipedal Robot with Deep Reinforcement Learn-
ing. URL: https : / / doi . org / 10 . 48550 /
arXiv.2304.13653. (accessed: 5.9.2023).

[4] Wojciech Giernacki et al. Crazyflie 2.0 Quadrotor as
a Platform for Research and Education in Robotics
and Control Engineering. URL: https://www.
bitcraze.io/papers/giernacki_draft_
crazyflie2.0.pdf. (accessed: 5.9.2023).

[5] Xiaoyu Huang et al. Creating a Dynamic Quadrupedal
Robotic Goalkeeper with Reinforcement Learning.
URL: https://doi.org/10.48550/arXiv.
2210.04435. (accessed: 5.9.2023).

[6] Faouzi Bouani Amira Kheriji Abbes and
Mekki Ksouri. A Microcontroller Implementation of
Constrained Model Predictive Control. URL: https:
/ / www . idc - online . com / technical _
references / pdfs / electrical _
engineering/A%20Microcontroller.pdf.
(accessed: 5.4.2023).

[7] John M. Carson III Behçet Açıkmese and Lars Black-
more. Lossless Convexification of Nonconvex Control
Bound and Pointing Constraints of the Soft Landing
Optimal Control Problem. URL: http : / / www .
larsblackmore . com / iee _ tcst13 . pdf.
(accessed: 5.9.2023).

[8] Robert J. Frei He Li and Patrick M. Wensing. Model
Hierarchy Predictive Control of Robotic Systems. URL:
https://ieeexplore.ieee.org/stamp/
stamp . jsp ? tp = &arnumber = 9361258. (ac-
cessed: 5.5.2023).

[9] Petoi. Open Source, Programmable Robot Dog Bittle.
Available at https://www.petoi.com/pages/
bittle-open-source-bionic-robot-dog
(5.9.2023).



[10] David Artz Richard Berger and Paul Kapcio.
RAD750TM Radiation Hardened PowerPCTM Micro-
processor. URL: https://caxapa.ru/thumbs/
440955/download.pdf. (accessed: 5.9.2023).

[11] B. Jackson T. Howell and Z. Manchester. ALTRO: A
Fast Solver for Constrained Trajectory Optimization.
URL: https : / / ieeexplore . ieee . org /
document/8967788. (accessed: 5.1.2023).

[12] Trieu Minh Vu. Model Predictive Control for Au-
tonomous Driving Vehicles. URL: https://www.
mdpi.com/2079- 9292/10/21/2593. (ac-
cessed: 5.9.2023).


