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Abstract—Model predictive control (MPC) is a powerful tool
for controlling highly dynamic robotic systems subject to complex
constraints. However, MPC, and its underlying (nonlinear) opti-
mization algorithms, are often too computationally demanding to
meet real-time rates for robotic platforms, both large and small.
These problems are exacerbated by the end of Dennard Scaling
and Moore’s law, which have led to a utilization wall that limits
the performance a single CPU chip can deliver. As such, we now
need to look to the field of software performance engineering to
co-design our solvers for their target hardware architectures.
As such, in our recent works, by leveraging a combination
of parallelism, approximation, and structure exploitation, we
have enabled and accelerated (nonlinear) trajectory optimization
solvers for real-time performance on non-standard computational
hardware, ranging from microcontrollers (MCUs) to graphical
processing units (GPUs). This has led to real-time MPC onboard
an MCU powered 27g quadrotor for dynamic obstacle avoidance,
as well as simulated whole-body nonlinear MPC at kHz rates for
a GPU powered manipulator for high speed trajectory tracking.

I. INTRODUCTION

Model Predictive Control (MPC) has enabled reactive and
dynamic online control for robots while respecting complex
control and state constraints such as those encountered during
dynamic obstacle avoidance and contact events [56, 10, 28,
21, 17, 50, 53]. However, despite MPC’s many successes,
its practical application is often hindered by computational
limitations, which can necessitate algorithmic simplifications,
especially for systems requiring high control rates for safe and
effective operation [59, 42, 33, 34].

Compounding this issue, the end of Moore’s Law and
Dennard Scaling have led to a utilization wall that limits the
performance a single CPU chip can deliver [55, 12]. As such,
for computationally bounded algorithms, like MPC, computer
scientists have had to look beyond the CPU to exploit large-
scale parallelism available on alternative computing platforms
such as GPUs. Several recent efforts have shown that sig-
nificant computational benefits are possible by exploiting the
natural parallelism in the computation of dynamics and cost
functions on GPUs and FPGAs [4, 40, 44, 33, 45, 24, 35, 58].
However, multiple-shooting and consensus approaches to com-
puting trajectory updates at each algorithmic iteration [15, 14,
20, 18, 29, 26] have only seen modest gains when implemented
on alternative hardware platforms [42, 43].

At the same time, there has been an explosion of interest

in tiny, low-cost robots that can operate in confined spaces,
making them a promising solution for applications ranging
from emergency search and rescue [30] to routine monitoring
and maintenance of infrastructure and equipment [9, 11].
These robots are limited to low-power, resource-constrained
microcontrollers (MCUs) for their computation [13, 41]. These
microcontrollers feature orders of magnitude less RAM, flash
memory, and processor speed compared to the CPUs and
GPUs. Consequently, many examples in the literature of
intelligent robot behaviors executed on these tiny platforms
rely on off-board computers [2, 54, 22, 27, 57, 52, 8].

In this work we show that in order to overcome these
challenges at all scales we need to look to the field
of software performance engineering and leverage holistic
algorithm-hardware co-design. Through this approach we can
meet performance targets while respecting real-world com-
puting constraints. We demonstrate the power of this ap-
proach through two projects. First we describe MPCGPU
(https://github.com/a2r-lab/MPCGPU) [1, 7], a GPU-
accelerated, NMPC solver that exploits the structured sparsity
and the natural parallelism in direct trajectory optimization
through a custom preconditioned conjugate gradient solver
at its core. Our experiments show that MPCGPU increases
the scalability and real-time performance of NMPC, solving
larger problems, at faster rates. Next we describe TinyMPC
(https://tinympc.org) [36, 48], an MCU-optimized im-
plementation of convex MPC using the alternating direction
method of multipliers (ADMM) algorithm. To the best of the
authors’ knowledge, TinyMPC is the first MPC solver tailored
for execution on these MCUs that has been demonstrated
onboard a highly dynamic, compute-limited robotic system,
and can support second-order cone constraints.

II. BACKGROUND

A. Direct Trajectory Optimization

In most MPC formulations, a trajectory optimization prob-
lem [5] is solved at each control step. These problems solve
a (nonlinear) optimization problem to compute a robot’s path
through an environment as a series of states X={x0,· · · , xN}
and controls U={u0,· · · , uN−1} for x ∈ Rn and u ∈ Rm,
model the robot as a discrete-time dynamical system,

xk+1 = f(xk, uk, h), x0 = xs, (1)

https://github.com/a2r-lab/MPCGPU
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Fig. 1: A high level overview of MPCGPU which: 1) in parallel on the GPU computes S, γ, and Φ−1 and stores those values
in an optimized dense format, 2) uses our GBD-PCG solver to compute λ∗ and reconstructs δX∗, δU∗ through GPU-friendly
matrix-vector multiplications and vector reductions, and 3) leverages a parallel line search to compute the final trajectory, X,U .
This trajectory is then passed to the (simulated) robot and the current state of the (simulated) robot is measured and fed back
into our solver which is run again, warm-started with our last solution.

with a timestep h, minimize an additive cost function,

J(X,U) = ℓf (xN ) +

N−1∑
k=0

ℓ(xk, uk), (2)

and may also be subject to additional constraints (e.g., torque
limits, obstacle avoidance constraints),

h(X,U) ≤ 0. (3)

In the nonlinear case, Taylor approximations of f(·), h(·),
and J(·) are taken at each iteration of the algorithm, and
regularization is applied, to produce a convex optimization
problem. The solution to this convex problem is then often
followed by a line search [37].

B. The Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) is
a popular and efficient approach for solving convex optimiza-
tion problems [6]. Given a generic problem of minimizing a
convex function f(x) according to a constraint x ∈ C, we can
form the equivalent problem (with the slack z),

min
x

f(x) + IC(z)

subject to x = z.
(4)

The augmented Lagrangian of the transformed problem (4)
is (with Lagrange multiplier λ and scalar penalty weight ρ):

LA(x, z, λ) = f(x) + IC(z) + λ⊺(x− z) +
ρ

2
||x− z||22. (5)

Thus, if we alternate minimization over x and z, we arrive
at the three-step ADMM iteration,

primal update : x+ = argmin
x

LA(x, z, λ), (6)

slack update : z+ = argmin
z

LA(x
+, z, λ), (7)

dual update : λ+ = λ+ ρ(x+ − z+), (8)

where the last step is a gradient-ascent update on the Lagrange
multiplier [6]. These steps can be iterated until a desired
convergence tolerance is achieved.

In the special cases of quadratic programs (QP) or a
second-order cone programs (SOCP), each step of the ADMM
algorithm becomes very simple to compute: the primal update

is the solution to a linear system, and the slack update is
a linear or conic projection. ADMM-based QP and SOCP
solvers such as OSQP [51] and SCS [39] are state-of-the-art.

C. Iterative Linear System Solvers

While solvers like OSQP leverage factorization-based ap-
proaches to solving their underlying linear systems (in partic-
ular the state-of-the-art QDLDL solver for OSQP), iterative
methods solve the problem Ax = b for a given A and b by
iteratively refining an estimate for x up to some tolerance ϵ.
The most popular of these methods is the conjugate gradient
(CG) algorithm which has been used for state-of-the-art results
on large-scale optimziation problems on the GPU [32, 49]. The
convergence rate of CG is directly related to the spread of the
eigenvalues of A [38]. Thus, a preconditoning matrix Φ ≈ A
is often applied to instead solve the equivalent problem with
better numerical properties: Φ−1Ax = Φ−1b. To do so, the
preconditioned conjugate gradient (PCG) algorithm leverages
matrix-vector products with A and Φ−1, as well as vector
reductions, both parallel friendly operations.

III. MPCGPU

A. Design and Implementation

As shown in Figure 1, our approach is broken down into
the three step process found in most direct methods [37],
but optimized to expose GPU-friendly computational patterns.
First, at each control step we construct a Taylor expansion
of the original problem, forming a QP. To form a symmetric
positive (semi-)definite linear system that we can solve with
PCG, we leverage the Schur complement reformulation of the
resulting KKT system. We form each block row of the Schur
complement system, S and γ, as well as our preconditioner,
Φ−1, in parallel, by taking advantage of the structured sparsity
of those matrices. To ensure efficient computation of the
underlying dynamics and kinematic quantities, we leverage the
GRiD library [45]. Next, we use our custom GPU-optimized,
warm-started, block-tridiagonal PCG solver, GBD-PCG, to
compute the optimal Lagrange multipliers, λ∗, and reconstruct
the optimal trajectory update, δX∗, δU∗. Finally we leverage
a parallel line search to compute the final trajectory X,U ,
which not only reduces latency of the update step, but can also



Fig. 2: (Left) Average linear system solve time (N = 32 . . . 512). (Center) Linear system solve cumulative distribution function
(N = 128). (Right) Average number of trajectory optimization iterations of MPCGPU at each control step. Results were
collected on high-performance workstation with a 3.2GHz 16-core Intel i9-12900K and a 2.2GHz NVIDIA GeForce RTX
4090 GPU which ran 100 NMPC trials of end-effector position tracking for a simulated Kuka IIWA-14 executing a 10 second,
5 goal, pick-and-place circuit, with thousands of underlying linear system solves.

improve the convergence of NMPC [42]. We send this to the
(simulated) robot for execution and simultaneously measure
the current state for our next control step.

B. Experiments and Results

As shown in Figure 2 (left), GBD-PCG outperforms the
state-of-the-art CPU-based QDLDL solver [51] across most
problem sizes, obtaining as much as a 3.6x average speedup.

In most cases, the speedup is much larger than this, as
iterative methods can exit early when warm-started. Using the
128 knot point problem as a case study, as shown in Figure 2
(center), for ϵ = 1e−4, 65% of GBD-PCG solves are ≥10x
faster than the fastest QDLDL solve, and the slowest GBD-
PCG solve is only 2.5x slower than the slowest QDLDL solve
(with only 10% ≥2x slower).

Figure 2 (right) shows the number of average trajectory
optimization iterations MPCGPU can achieve while meeting
the specified control rates and trajectory lengths. Our GPU-
first approach enables us to solve 512 knot point trajectories
at 1kHz and execute 8 iterations for 128 knot points at 500Hz,
for a per-iteration rate of 4kHz. This compares favorably to
previously reported results of 500hz to 1kHz per-iteration
rates for trajectories of 30 to 120 knot points using state-of-
the-art CPU-based [29, 19] and GPU-based [42] solvers.

IV. TINYMPC

A. Design and Implementation

TinyMPC trades generality for speed and low-memory
utilization to enable real-time use on MCUs by exploiting the
structure of the MPC problem. Specifically, we leverage the
closed-form Riccati solution to the LQR problem to compute
the primal update in (6), accounting for the standard dynamics
constraints, and leave any additional constraints to be handled
by the remainder of the ADMM algorithm.

In particular, given a long enough horizon, the Riccati
recursion (9) converges to the constant solution of the infinite-
horizon LQR problem [25]. Thus, we pre-compute a single
LQR gain matrix K∞ and cost-to-go Hessian P∞. Then,

instead of solving the full LQR update at each timestep:
Kk = (R+B⊺Pk+1B)−1(B⊺Pk+1A)

dk = (R+B⊺Pk+1B)−1(B⊺pk+1 + rk)

Pk = Q+K⊺
kRKk + (A−BKk)

⊺Pk+1(A−BKk)

pk = qk + (A−BKk)
⊺(pk+1 − Pk+1Bdk) +K⊺

k (Rdk − rk).

(9)

We instead cache the following matrices from (9):

C1 = (R+B⊺P∞B)−1,

C2 = (A−BK∞)⊺,
(10)

and then only need to update the linear terms during each
ADMM iteration:

dk = C1(B
⊺pk+1 + rk),

pk = qk + C2pk+1 −K⊺
∞rk.

(11)

As a result, we avoid online matrix factorization and only
compute matrix-vector products. We also dramatically reduce
memory footprint by only storing a few vectors per time step.

We also note that the slack update in (7) can be written as
the operator Π that projects the slack variable onto the feasible
space. For linear inequality constraints, the projection is onto
a set of bounds defined by the element-wise operator

Π(z) = max(zl,min(zu, z)), (12)

where z corresponds to the state and control input slack
variables. As the structure of the ADMM algorithm inherently
isolates the projection step, we can also replace the projection
operator in the slack update (12) with the SOC projection:

ΠK(z) =


0, ∥v∥2 ≤ −a,

z, ∥v∥2 ≤ a,

1

2

(
1 +

a

∥v∥2
) [ v

∥v∥2

]
, ∥v∥2 > |a|,

(13)

where v = [z1, . . . , zn−1]
⊺, a = zn. Here, zi, i = 1, ..., n is

any vector subset of the state or control slack variables.

B. Experiments and Results
We compare TinyMPC against state-of-the-art solvers for

two problems while varying the number of states and the
horizon length. The first is a predictive safety filtering problem
with box constraints on the state and input. The second is



Fig. 3: (a) Compares memory usage (top) and average iteration times (bottom) for TinyMPC and OSQP on a QP-based
predictive safety filtering task using a 168 MHz STM32F405 with 1 MB of Flash, and 128 kB of RAM. In the first column,
the time horizon was kept constant at N = 10 while the state dimension n ranged from 2 to 32 and the input dimension
was set to half of the state dimension. In the second column, the state and control input were held constant at n = 10 and
m = 5 while N ranged from 4 to 100. (b) Compares average iteration times (top) and memory usage (bottom) for TinyMPC
and ECOS and SCS on an SOCP-based rocket soft-landing using a 600 MHz Teensy 4.1 with 7.75 MB of flash, and 512
kB of tightly coupled RAM. In this experiment n = 6 and m = 3 while N varied from 2 to 256. The error bars represent
the maximum and minimum time taken per iteration for all MPC steps performed for a specific problem. The black dotted
lines denote memory thresholds. Across all problems, TinyMPC requires the least memory and is the fastest. (c) Shows the
results of hardware experiments for real-time dynamic obstacle avoidance (top), recovery from a 90◦ attitude error (middle),
and tracking a descending helical reference (red) with its position subject to a 45◦ second-order cone glideslope (blue).

a rocket soft-landing problem with a second-order cone con-
straint on the thrust vector. The safety filter QP is benchmarked
against OSQP and the rocket soft-landing SOCP is bench-
marked against ECOS and SCS. The microcontroller results
are reported in Figure 3 (a) and (b). Across both problems
we find that TinyMPC outperforms comparable state-of-the-art
solvers both in terms of latency and in terms of memory usage.
In fact, alternative solvers often exceed the memory limits
available on our MCU hardware. For example, OSQP exceeds
memory limits and cannot be run onboard the STM32F405
for n,N ≥ 32, and ECOS and SCS exceed the limits of the
higher resourced Teensy 4.1 at N ≥ 64, while TinyMPC scales
to N,n = 100 and N = 256 respectively.

Figure 3 (c) shows the results of hardware demonstrations
showing real-time dynamic obstacle avoidance (top), recovery
from a 90◦ attitude error (middle), and tracking a descending
helical reference with its position subject to a 45◦ second-
order cone glideslope (bottom), demonstrating the real-world,
real-time applicability of TinyMPC.

V. CONCLUSION AND FUTURE WORK

Throughout these works we show that in order to over-
come computational challenges in robotics at all scales we
need to look to the field of software performance engineer-
ing and leverage holistic algorithm-hardware co-design. With
MPCGPU (https://github.com/a2r-lab/MPCGPU) [1,
7], we show that by leveraging structure sparsity and nat-
ural parallelism we can develop a faster-than-state-of-the-

art nonlinear MPC solver on the GPU. With TinyMPC
(https://tinympc.org) [36, 48], we show that through
principled algorithmic simplifications, convex MPC can be run
in real-time on a MCU, enabling highly dynamic, compute-
limited robotic systems to perform real-time obstacle avoid-
ance and support second-order cone constraints. We hope this
work increases interest in co-design, performance engineering,
and computational systems for robotics.

In future work we hope to leverage these performant so-
lutions to begin to bridge the gap between optimal control
and learning-based control and integrate both control stacks
with additional onboard sensors to enable fully autonomous
operation on real-world tasks. We are particularly interested in
leveraging MPCGPU to support faster actor-critic approaches
to MPC [16, 3, 31, 47, 46], and to add adaptive control [23],
parameter learning [60], and model-based RL [22] approaches
to TinyMPC, enabling it to adjust to a changing real-world
environments despite caching certain computations offline.
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[9] Sébastien D De Rivaz, Benjamin Goldberg, Neel Doshi,
Kaushik Jayaram, Jack Zhou, and Robert J Wood. In-
verted and vertical climbing of a quadrupedal microrobot
using electroadhesion. Science Robotics, 3(25):eaau3038,
2018.

[10] Jared Di Carlo. Software and control design for the MIT
Cheetah quadruped robots. PhD thesis, Massachusetts
Institute of Technology, 2020.

[11] Bardienus P Duisterhof, Shushuai Li, Javier Burgués,
Vijay Janapa Reddi, and Guido CHE de Croon. Sniffy
bug: A fully autonomous swarm of gas-seeking nano
quadcopters in cluttered environments. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 9099–9106. IEEE, 2021.

[12] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark Sil-
icon and the End of Multicore Scaling. In Proceedings of

the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pages 365–376. ACM. ISBN
978-1-4503-0472-6. doi: 10.1145/2000064.2000108.

[13] Wojciech Giernacki et al. Crazyflie 2.0 quadrotor as
a platform for research and education in robotics and
control engineering. URL https://www.bitcraze.io/papers/
giernacki draft crazyflie2.0.pdf.

[14] Farbod Farshidian, Edo Jelavic, Asutosh Satapathy,
Markus Giftthaler, and Jonas Buchli. Real-time motion
planning of legged robots: A model predictive control
approach. In 2017 IEEE-RAS 17th International Confer-
ence on Humanoid Robotics (Humanoids), pages 577–
584. IEEE, 2017.

[15] Markus Giftthaler, Michael Neunert, Markus Stäuble,
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