

TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers

Khai Nguyen*, Sam Schoedel*, Anoushka Alavilli*, Brian Plancher, Zac Manchester

 Carnegie Mellon University

 Robotics Institute

ICRA2024

tinympc.org

Introduction

Key Ideas

MPC enables safe and dynamic behaviors on complex robots but is computationally expensive.

REXLAB

Solving constrained optimization

Infinite-horizon LQR reduces memory footprint. Precomputation reduces online flop count.

problems at real-time rates is challenging, even for large robots that carry more compute.

Can we bring MPC to compute-limited robots?

Algorithm

TinyMPC uses the Alternating Direction Method of Multipliers (ADMM), which iterates between solving three subproblems until convergence.

1) We compute a single optimal gain matrix K and cost-to-go matrix P for the entire horizon.

$$\frac{K_{k} = (R + B^{T}P_{k+1}B)^{-1}(B^{T}P_{k+1}A)}{P_{k} = Q + K_{k}^{T}RK_{k} + (A - BK_{k})^{T}P_{k+1}(A - BK_{k})} \propto P_{in}$$

2) Precomputation of parts of the Riccati equations allows online computation of only matrix-vector products.

Offline Online

$$C_1 = (R + B^T P_{inf} B)^{-1}$$
 $d_k = C_1 (B^T p_{k+1} + r_k)$
 $C_2 = (A - BK_{inf})^T$ $p_k = q_k + C_2 p_{k+1} - K_{inf}^T r_k$

Benchmarks

The primal update becomes a Linear-Quadratic Regulator, which has a closed-form solution (the Riccati recursion) that we exploit to reduce memory and online computation.

Hardware

TinyMPC enables real-time optimal control onboard tiny robots like the Crazyflie 2.1, a 27 gram nano-quadrotor.

We compared TinyMPC against OSQP, a state-of-the-art QP solver, on randomly generated convex MPC problems.

time per iteration [µs]

Dynamic obstacle avoidance

Extreme pose recovery

High-speed trajectory tracking

Microcontroller benchmarks were performed on a Teensy 4.1, which has 512 kB of RAM and a 600 MHz processor. Hardware demonstrations were performed on a Crazyflie 2.1, which has an STM32F405 processor running at 168 MHz with 192 kB of RAM.