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Abstract

Coming to the best possible decision based on some predefined set of criteria is
never easy, but it is always fascinating. This ability can empower higher degrees
of autonomy in addressing problems from a wide range of areas, including artifi-
cial intelligence (AI), cybernetics, operations research, economics, and so on. By
this drive, many mathematical theories have been proposed in relation to several
concepts such as feedback control, optimality, adaptation, and learning. This work
investigates the domain of optimal feedback control based on reinforcement learn-
ing (RL) and adaptive/approximate dynamic programming (ADP) to improve the
closed-loop performance of nonlinear systems. The developed adaptive optimal con-
trollers are associated with the solution of the Hamilton–Jacobi–Bellman equation
by using policy iteration method, where the learning process occurs through an
actor-critic (AC) structure. Integrating the forward-in-time methods with neural
networks (NNs), the optimal policy and value function of continuous nonlinear sys-
tems are learned online in real time.

Moreover, this work proposes the combination of RL/ADP-based design and non-
linear methods to develop robust optimal control for continuous nonlinear systems
with uncertainties and disturbances. One contribution is the introduction of time-
varying robust integral of the sign of the error (RISE) into RL-based control of
second-order nonlinear systems. Matlab simulation results on a 2-DOF robot arm
demonstrate the improved performance of the time-varying RISE-based RL scheme
in comparison with the original RISE-based RL controller. Another innovation is
the disturbance observer-based RL control approach which not only learns the op-
timal policy but also learns the unknown disturbances. To verify the advantages of
the proposed control structure, a comparison with the original RL-based method is
made, implementing a surface vessel system simulation.

This work motivates the next focus on partially/completely model-free RL meth-
ods such as integral RL and off-policy with explicit optimality and stability proof.
Moreover, differential games and multi-agent systems are interesting topics where
RL literature can be implemented.

Hanoi, ..........., 2021
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Chapter 1

Introduction

1.1 Background and motivation

Real world systems are naturally nonlinear at least when considered over wide-
ranging operating points. Artificial systems with advanced functionalities in practi-
cal processes usually present nonlinearities, time-varying unpredictable parameters,
and other complexities from design limitation, operation conditions, unmodeled dy-
namics, and even internal and external disturbances [1].

As is well known, there are many methods for designing stable control for nonlin-
ear systems. Different control techniques have been proposed for both theoretical
interests and practical applications such as robust adaptive control [2, 3], sliding
mode control (SMC) [4, 5], backstepping control [6, 7], and intelligent control [8, 9].
Moreover, the problems of input/output constraint, time delay, and finite time con-
trol have been considered in [10, 11, 12]. In fact, disturbances can be generalized
from unmodeled dynamics, parameter variation, and external disturbances which
widely exist in marine engineering (e.g. boats, ships, hovercraft and submarines),
aerospace engineering such as missiles, aircrafts and satellites, and also many other
engineering systems [13]. Adaptive and robust methods are two prevalent tools to
handle uncertain/disturbed systems. Robust techniques, such as SMC [4, 5] and
RISE method [14, 15], are also powerful tools to compensate for the uncertainties
or disturbances in nonlinear systems. It is also well known that H∞ control is one
of the design methods for handling the disturbance attenuation problem of control
systems [16]. However, H∞ control is in general too conservative to obtain a highly
accurate control performance under unknown disturbances. Recently, the successful
development of disturbance observer-based control (DOBC) structures for nonlin-
ear systems have been applied in a variety of control systems [17, 18]. A group of
controllers known as adaptive controllers learns online to control unknown systems
using data measured in real time along the system trajectories [19]. While learning
the control solutions, adaptive controllers are able to guarantee stability and system
performance [3]. However, stability is only a bare minimum requirement in a system
design.

On the other hand, optimal control is an important research area in practice and
theory [20]. The objective is to determine a control scheme that optimally drives the
dynamics system to equilibrium in terms of a performance index function. Optimal
controllers are typically designed offline by solving certain equations, for instance,
the Riccati equation, utilizing full information of the system dynamics. Additionally,
for nonlinear systems, optimal control can be derived by solving nonlinear HJB
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CHAPTER 1. INTRODUCTION

equations that are difficult to find a global analytic solution [21]. The design of
optimal controllers that inherits adaptive features (online learning in real time) can
be studied by the mechanism of RL and ADP techniques which are the main topic
of this thesis.

RL is an important machine learning concept that has been broadly studied in the
artificial intelligence community [21]. RL technique involves an actor or agent which
interacts with its environment and intends to learn the optimal actions, or control
policies, by observing their responses from the environment. In other words, an RL
agent performs its actions in order to minimize a long-term performance cost with
the environment [22]. A novel stage of RL strategy was started by the introduction
of ADP which has been a popular topic in recent times. The advent of RL and
especially ADP algorithm bridged the gap between traditional optimal control and
adaptive control algorithms [21, 23, 24, 25]. ADP delivers the potential of a new
family of adaptive controllers that converge to optimal control schemes directly.

In RL and ADP, there is a substantial and successful body of work that approxi-
mates the HJB equations utilizing efficient forward-in-time approaches based on the
use of NNs for value functional approximation. Originally, attention has primarily
been given to ADP/RL-related control design for Markov decision processes (MDP)
[9, 21, 24] and discrete-time feedback control systems [25, 26]. In Q-learning method
[24], a Q function depending on both the state variable and control input is handled.
Still, in MDP, the considered state spaces are finite or countable, and the stability
problem is mostly implicit. Besides, due to the difference between discrete-time
(DT) and continuous-time (CT) Bellman equations [25], the existing ADP tech-
niques for DT systems cannot be directly brought to the CT case. Several studies
have been conducted on the implementation of RL and ADP for CT systems. In
[23], Euler’s method was used to discretize the CT Bellman equation. If the equation
is not properly discretized, then the DT solutions and the CT solutions are not in
agreement. An online AC architecture was used in [27] to solve the continuous-time
infinite horizon optimal control problem. In [28] the integral RL (IRL) technique
was implemented based on integral reinforcement form. This concept is able to
deal with dynamic uncertainties via off-policy method [29]. A different approach of
adaptive RL (ARL) structure for unknown dynamics can be regarded using actor-
critic-identifier [30]. Expanding this idea, with a special cost function, the authors
in [31] design a model-free ARL scheme without any knowledge of the system dy-
namics. However, it has been said to be clumsy to have a system identification step
[25]. Another direction of RL is to address optimal control problems with input
saturation using a novel multi-gradient recursive (MGR) reinforcement learning ap-
proach [32]. The work in [33] investigated the stability of the ADP-based control
combining ideas from reinforcement learning and robust control. Moreover, deal-
ing with system uncertainties and unknown disturbances to achieve robust optimal
performance is an interesting concern. In [34], ADP is designed with robust con-
trol (sliding variable and RISE method) to cope with uncertain/disturbed nonlinear
systems. In general, it is crucial to develop advanced control methods for a wide
range of systems and applications (e.g. automobiles, aerospace, industrial machines,
and processes, biomedical uses, networks, and power systems) that demonstrate the
performance of stability, optimality, adaptability, and robustness.

This work concentrates on the frame of RL/ADP-based control strategy combining
with disturbance attenuation schemes for continuous-time nonlinear systems with
uncertainties and disturbances.

2



CHAPTER 1. INTRODUCTION

1.2 Objectives and methodology

Inspired by the reviewed works and study from traditional nonlinear control tech-
niques to adaptive optimal control scheme, the purpose of this thesis is to analyze
and design novel ARL-based control structures for uncertain continuous-time non-
linear systems with disturbances. The algorithms have the following characteristics:

• Online and real-time control, avoiding system identification (direct or indirect).

• Guaranteeing robust stability towards disturbances.

• Minimizing performance index function and guaranteeing the convergence of
the solution.

• Reducing computing resources to accelerate the speed of convergence.

• Simple and efficient to implement for a wide range of control problems.

These objectives contribute to the improved closed-loop performance of nonlinear
systems.

Regarding methodology, this research-based thesis is conducted by

• Studying related references; providing preliminaries.

• Analyzing and designing control systems; computing and proving stability
using mathematics.

• Verifying the proposed algorithms via Matlab simulation.

• Comparing the results with other related works to demonstrate the improve-
ments.

1.3 Contributions

The goal of this work is to develop novel ADP/RL-based control structures for
continuous-time nonlinear systems with uncertainties and disturbances. The contri-
butions of Chapter 3 and Chapter 4 are as follows:

Time-varying RISE-based RL control of nonlinear systems: This work
proposes a new structure ARL-based robust control scheme for second-order non-
linear MIMO systems. The introduction of time-varying RISE and learning-based
control guarantees tracking performance under several assumptions on the nonlin-
earities and uncertainties of the system. The time-varying RISE is constructed by
replacing static feedback gains in the original RISE control law with nonlinear ones
as functions of system variables. In addition, adaptive reinforcement learning (ARL)
is employed to achieve adaptive optimal tracking performance for a transformed au-
tonomous system via defining a sliding variable. The main contribution of this thesis
is the use of time-varying RISE, in conjunction with the AC algorithm to guarantee
robust tracking of a nonlinear system subjected to disturbances. Moreover, this
work clarifies the initial conditions of the robot manipulator system and presents
exploratory signal function, compared to [34]. All explicit variables and functions

3



CHAPTER 1. INTRODUCTION

in this work contribute to the numerical comparison between the two approaches.
Matlab simulation results on a 2-DOF robot arm demonstrate the improved per-
formance of the time-varying RISE-based RL scheme in comparison with the original
RISE-based RL controller.

Disturbance observer-based RL control of nonlinear systems: Consider-
ing nonlinear systems with unknown disturbances, this work proposes a disturbance
observer-based RL control scheme. To facilitate RL algorithm, the kinematic and
feed-forward controller is introduced to transform the original system into an au-
tonomous one. On-policy AC architecture is used to address the optimal control
problem for the augmented dynamic subsystem without disturbances and its aim is
to stabilize the nonlinear plant and obtain the optimal value function. Addition-
ally, a nonlinear disturbance observer is implemented in this study to attenuate the
unknown disturbances and uncertainties of the system. The compensation control,
together with the RL core, produces the robust optimal control input. Simulation
results in the presence of disturbance on a surface vessel (SV) model show upgrades
to the original approach in terms of tracking performance.

1.4 Thesis structure

The main contents are organized as

Chapter 1 introduces the general ideas of the work. The background, motivation,
related work, and contributions of the thesis are systematically given.

Chapter 2 reviews the main literature of RL and shows how these techniques
can be applied to tackle control problems. Then, disturbance attenuation methods
are discussed in detail for later control design. Coordination between RL, optimal
control, and disturbance attenuation methods are formed and implementation issues
are highlighted.

Chapter 3 proposes an RL-based controller to obtain optimal tracking of a class of
nonlinear systems with uncertainties and disturbances. While the sliding variable
helps to achieve the reduced-order system, the novel time-varying RISE method
contributes to the robust stability toward unexpected factors.

Chapter 4 proposes a robust optimal control structure for uncertain nonlinear
systems with disturbances. The original nonlinear system is transformed into the
autonomous form by designing a kinematic and feed-forward control scheme. Using
the same AC architecture as the previous design, however, a DO is implemented
to estimate the unknown disturbances. A combined control input including RL-
based term and compensation term guarantees the robustness and stability of the
closed-loop system.

Chapter 5 serves as a conclusion of the key ideas, contributions, and limitations of
this work. It also sheds light on research directions and developments in the future.
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Chapter 2

Literature Review

2.1 Reinforcement learning

RL, which was first noticed in the learning behavior of humans and other mammals,
is defined differently in different works. Generally, an RL problem involves the ex-
istence of an agent that can interact with an environment by taking actions and
collecting a reward from it. Sutton and Barto described RL as how to map situa-
tions to actions in order to maximize a numerical reward signal [21]. Apparently,
maximizing a reward is corresponding to minimizing a cost, which is used more
commonly on the subject of optimal control [20]. A mapping between situations
and actions is called a policy, and the goal of RL is to learn an optimal policy in
such a way that a predefined cost is minimized. Instead of involving a supervisor
to instruct an agent on how to perform the best possible action, RL focuses on how
the agent should adjust its behaviors toward the optimal one through interactions
with the unknown environment. A typical RL iteration consists of two main stages.
First, the agent interacts with the environment to assess the cost under the present
policy. Policy evaluation is the name for this stage. Second, the agent implements
a new policy based on the evaluated cost to further reduce the cost. This stage is
known as policy improvement. Connections between optimal control and RL are
formed and implementation topics are emphasized, which stimulate the approaches
developed in this thesis.

2.1.1 Reinforcement learning methods

In normal cases, RL methods determine the performance index function or value
function, which indicates how well a given action is applied for a given state. The
meaning of value function is the long-term reward/penalty accumulated by the agent
and for a deterministic MDP which can be defined as an infinite-horizon return with
discount factor as [21]

V u (x0) =
∞∑
k=0

γkrk+1 (2.1)

for the discrete-time system,xk+1 = f (xk, uk), rk+1 , r (xk, uk) is the reward/penalty
at the kth step, xk and uk are the state and action, respectively, and γ ∈ [0, 1) is
the discount factor. The general objective of RL is to determine a policy that max-
imizes the value function. Using Bellman’s equation, the unknown value function is

5



CHAPTER 2. LITERATURE REVIEW

rewritten as [21]
V u(x) = r(x, u) + γV u(f(x, u)) (2.2)

where the index k is suppressed. Define the optimal value function as

V ∗(x) = min
u
V u(x) (2.3)

Bellman’s optimality principle states that “an optimal policy has the property that
no matter what the previous control actions have been, the remaining controls con-
stitute an optimal policy with regard to the state resulting from those previous
controls.” Therefore, (2.3) is rewritten as follows

V ∗(x) = min
u

[r(x, u) + γV ∗(f(x, u))] (2.4)

Supposing at time k, an arbitrary control u is applied and the optimal policy from
time k + 1 is on. The optimal control at time k according to Bellman’s optimality
principle is given as

u∗(x) = arg min
u

[r(x, u) + γV ∗(f(x, u))] (2.5)

The above backward recursion lays the foundation of all DP/RL methods: policy
iteration, value iteration, and Q-learning [21]. There is another way of RL method
classification: model-based and model-free. In, model-based or DP-based RL algo-
rithms (2.4) and (2.5) are employed offline and complete environment information,
as seen from (2.4) and (2.5), is required. In contrast, model-free RL methods are
based on the temporal difference (TD), which denotes the difference between tem-
porally successive estimates of the same quantity. These are online methods which
do not utilize complete system model, instead, they exploit data collected from the
process, that is, they learn by interacting with the environment. Several prevalent
RL methods are described as follows.

2.1.1.1 Q-learning

Instead of approximating the cost functions of successive policies V (x), Q-learning
updates the Q-factors Q(x, u) associated with an optimal policy, thereby precluding
the various policy evaluation steps of PI [21]. The Q-iteration method finds the
optimal Q-factor Q∗(x, u) based on TD error as

Q(x, u)← Q(x, u) + α[r(x, u) + γmin
a
Q(x̄, a)−Q(x, u)] (2.6)

The Q-learning method plays an important role in RL due to the use of the optimal
action-value function which is independent of the current policy (also called off-
policy), which significantly makes the convergence analysis of the algorithm easier.
Moreover, another factor is that Q-learning method may not require the complete
knowledge of system dynamics. Besides, for the convergence to Q∗, sufficient explo-
ration is necessary. Then, from doing a greedy search on Q∗ the optimal policy can
be explicitly obtained as

u∗(x) = arg min
a
Q∗(x, a) (2.7)

6



CHAPTER 2. LITERATURE REVIEW

2.1.1.2 Policy iteration

Policy iteration (PI) methods include two phases: policy evaluation and policy im-
provement. Beginning with an initial admissible policy, this algorithm estimates
the value function (policy evaluation phase) and then uses a greedy search on the
estimated value function to improve the policy (policy improvement phase). The PI
algorithm, the main method used in this work, is expressed by the following steps.

Algorithm 2.1: Policy iteration (PI) algorithm

1. Initialize: Choose any admissible, i.e. stabilizing, control policy.

Until convergence

2. Policy evaluation phase: Using the Bellman Equation to determine the value
of the current policy

V u(x)← r(x, u) + γV u(f(x, u)) (2.8)

3. Policy improvement phase: Improve the current policy using

ū(x) = arg min
a

[r(x, a) + γV u(f(x, a))] (2.9)

It can be seen from (2.8) and (2.9) that knowledge of the system dynamics f(x, u) is
required to implement PI method. Using an integral approach, the algorithm can be
applied without the knowledge of system dynamics, which constructs a model-free
method known as integral reinforcement learning (IRL) [28]. In addition, using TD
learning, online PI algorithms may simultaneously/synchronously run policy evalu-
ation and policy improvement steps; however, only under very restrictive conditions
and sufficient exploration, they may converge to the optimal policy.

2.1.1.3 Value iteration

In value iteration (VI), starting from an arbitrary initial policy, the value function
is directly improved by effectively combining the evaluation and the improvement
steps into one single update using the following recurrence associations from DP [21]

V (x)← min
a

[r(x, a) + γV (f(x, a))] (2.10)

The optimal V ∗(x) can be obtained with less computing resources than PI, however,
PI algorithm typically requires fewer iterations for convergence.

2.1.2 Actor-critic architecture

2.1.2.1 Neural network implementation

In DP, at every iteration, the estimated value function is stored as a look-up ta-
ble, and all the table records are updated with the entire state space. In fact,
they become computationally intractable as the state space expands, which leads to
the curse of dimensionality. Considering continuous spaces, the infinite number of
states and actions makes the problem become even more complicated. The problem

7
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is solved by value functions representation using function approximators via Stone-
Weierstrass Theorem. Using linearly parameterized approximators, the function is
fairly represented. It is stated that a single-layer neural network (NN) can simulta-
neously approximate a function and its derivative with a sufficiently large number
of activation functions. A continuously differentiable function could be conveniently
represented as

V (x) = W Tψ(x) + ε(x) (2.11)

where W is the unknown parameter vector, and ψ(x) is a user-defined basis function,
and ε : Rn → R denotes the function approximation error. The function approxi-
mation error, along with its derivative can be made arbitrarily small by increasing
the number of basis functions.

It is crucial to choose appropriate basis functions which represent all the independent
characteristics of the value function while solving the RL problem. It is noted that
some prior information about the process can be embedded in the NN activation
function. Moreover, the NN weight learning process makes use of optimization
algorithms such as least squares, gradient descent, etc. Besides, deep NN can also
be used as nonlinearly parameterized approximators; though, it is tougher to prove
weight convergence in comparison with linearly parameterized network architectures.

2.1.2.2 Policy iteration actor-critic architecture

Actor

Critic

Plant

Figure 2.1: Online policy iteration based on AC architecture

The actor-critic architecture (see Figure 2.1) is one of the most widely used archi-
tectures to implement online RL algorithms. The actor can learn the control, where
the estimate of value function is obtained by the critic. Using an adaptive update
law designed as a differential equation, the actor and the critic weights are tuned
continuously [30]. The actor can also be adjusted in order to minimize the Bellman
error or the TD error. Simultaneously, the critic weights can be tuned by the TD
method or using heuristic DP or its variants. Under appropriate PE conditions,
they can converge to a neighborhood of the optimal value function and the optimal
policy.

2.1.3 Infinite horizon optimal control

RL and optimal control are inextricably linked. This section presents the undis-
counted infinite horizon optimal regulation problem for continuous-time nonlinear
systems. First, a continuous-time nonlinear system is considered as

ẋ = F (x, u) (2.12)

8
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where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm is the control input. If F : X × U → Rn is
Lipschitz continuous on X × U containing the origin, the solution x(t) of the sys-
tem in (2.12) is unique for any finite initial condition x0 and the control u ∈ U .
Moreover, the system is stabilizable, in other words, the closed-loop system can be
asymptotically stable by applying an appropriate continuous feedback control law
u(x(t)).

For the system (2.12), the infinite-horizon scalar performance index can be described
as

J(x(t)) =

∞∫
t

r(x(s), u(s))ds (2.13)

where t is the initial time, r(x, u) ∈ R is the utilization function, written as

r(x, u) = Q(x) + uTRu (2.14)

where R ∈ Rm×m is a positive-definite symmetric matrix and Q(x) ∈ R is positive
definite and continuously differentiable.

The objective is to find an admissible control u∗ ∈ Ψ(X ), so that the performance
index function in (2.13) associated with the system (2.12) is minimized.

It is noted that, an admissible control u(t) refers to a continuous feedback control
law u(x(t)) ∈ Ψ(X ), where Ψ(·) implies an admissible control set, which guarantees
the asymptotic stability of the system (2.12) on X , u(0) = 0, and J(·) in (2.13) is
finite.

Then, the optimal value function can be determined as

V ∗(x(t)) = min
u(τ)∈Ψ(X )
t≤τ<∞

∫ ∞
t

r(x(s), u(x(s)))ds (2.15)

Given the continuously differentiable value function, Bellman’s principle of optimal-
ity can be used to obtain the subsequent optimality condition

0 = min
u(t)∈Ψ (X )

[
r(x, u) +

∂V ∗(x)

∂x
F (x, u)

]
(2.16)

This is a partial differential equation for the optimal cost V ∗(x). It is called the
Hamilton–Jacobi–Bellman (HJB) equation. With the assumption that V ∗(x) is
continuously differentiable, the HJB in (2.16) provides a way to acquire the optimal
control policy u∗(x). Using (2.14) and (2.16), the optimal feedback control can be
obtained as

u∗(x) = −1

2
R−1∂F (x, u)T

∂u

∂V ∗(x)T

∂x
(2.17)

For the continuous-time nonlinear affine system

ẋ = f(x) + g(x)u (2.18)

where f(x) ∈ Rn and g(x) ∈ Rn×m, (2.17) can be rewritten as

u∗(x) = −1

2
R−1gT (x)

∂V ∗(x)T

∂x
(2.19)

9
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The HJB in (2.16) can be rewritten by replacing for the immediate cost in (2.14),
the system in (2.18) and the optimal control in (2.19), as

0 = Q(x) +
∂V ∗(x)

∂x
f(x)− 1

4

∂V ∗(x)

∂x
g(x)R−1gT (x)

∂V ∗(x)T

∂x
0 = V ∗(0)

(2.20)

The optimal policy in (2.19) can be revealed with the understanding of the optimal
value function V ∗(x), which is the solution of the HJB equation in (2.20). In fact,
the nonlinear HJB equation is very difficult to be solved in general and sometimes,
does not have an analytical solution.

2.1.4 Reinforcement learning and adaptive optimal control

On the one hand, adaptive control offers methods to design controllers which are
able to learn or adapt online to the uncertainties in system dynamics by the way
of minimizing the output error (e.g., least squares or gradient descent methods).
Nevertheless, traditional adaptive control theories do not target optimality in the
sense of maximizing a performance function in the long run.

On the other hand, most optimal control approaches are offline and need explicit
model knowledge. The Riccati equation in linear systems is solved offline and re-
quires precise information of the system dynamics. In the context of control en-
gineering, ADP and RL bridge the gap between conventional optimal control and
adaptive control algorithms [35]. Adaptive optimal control methods learn the op-
timal policy and value function for a physical system. Unlike conventional optimal
control, RL intends to solve the nonlinear HJB equation online in real time. In
contrast, unlike classical adaptive controllers, both stability and optimality proper-
ties are the main concern for the closed-loop system. This has fostered the idea of
adaptive autonomy in an optimal aspect by developing ADP/RL-based controllers
[25].

In MDPs, RL algorithms described in Section 2.1.1 have been successfully imple-
mented to find optimal policies in uncertain environments, for example, Q-learning
based on TD is an online model-free RL method. It is argued that RL is a direct
adaptive optimal control technique. The nature of RL algorithms is discrete so that
numerous methods have been suggested for adaptive optimal control of discrete-time
systems. In fact, for continuous-time systems, RL implementation is not as explicit
as in the former problem, because while the discrete-time TD error is model-free,
the continuous-time TD error formula fundamentally involves full knowledge of the
system dynamics (2.16). Based on the model-based TD method, RL techniques
for continuous-time systems are introduced. Moreover, RL-based controllers en-
counter many other issues: closed-loop stability, function approximation, optimal
convergence performance, and the tradeoff between exploitation and exploration. A
number of studies have thoroughly addressed these difficulties, which play an impor-
tant role in the effective application of RL-based control techniques. Generally, this
thesis is inspired by the need to deliver innovation on RL-based feedback control
structures and discover their potential as adaptive optimal control concepts.

10
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2.2 Disturbance attenuation in control systems

In reality, “disturbances” is a generalized concept, which may include external dis-
turbances, unmodeled dynamics, and parameter perturbations. They broadly exist
in marine engineering (e.g. boats, ships, hovercraft and submarines), aerospace en-
gineering such as aircrafts, missiles and satellites, and also many other engineering
systems [13]. In general, disturbance is key factor that degrades the control sys-
tem performance. The importance of disturbance attenuation and rejection in con-
trol system design is undeniable [3]. Many classical controls with fixed parameters
cannot guarantee fast response and high precision in the presence of disturbances.
Therefore, different ways have been carried out to deal with disturbances.

On the one hand, adaptive control is a powerful tool for structured uncertainties
[1]. Nevertheless, various kinds of disturbances may potentially deteriorate the
performance, or even produce instability. Many researchers have looked at robust
control as an alternative. Among that, sliding mode control (SMC) can cope with
all bounded modeling uncertainties and guarantee asymptotic tracking performance
[4]. However, it is difficult for practical application because of the chattering nature
of SMC. Addressing this problem prompts many strategies, and high-order SMC is a
primary solution [5]. Furthermore, the continuous RISE control strategy developed
in [36], which includes a unique integral signum feedback term, can cover sufficiently
smooth bounded disturbances. This new control structure contributes to asymptotic
stability which can be achieved regardless of existing modeling uncertainties. By this
technique, many different problems [14, 37] have been accomplished.

On the other hand, combining control strategies with disturbance estimation meth-
ods becomes an attractive strategy, which can deal with greater uncertainties. Among
these, the disturbance observer (DO) has been employed with robust control [18],
for adaptive robust control [17]. Not only external disturbances but also internal
unmodeled dynamics and unknown uncertainties are within the estimation range of
DO.

2.2.1 RISE control for nonlinear systems

A novel control structure called robust integral of the sign of the error (RISE)
has been introduced in [36] to deal with multi-input multi-output (MIMO) high-
order nonlinear systems. This non-model-based continuous control mechanism can
guarantee a semi-global asymptotic tracking under some restricted assumptions on
the system. Moreover, due to the high robustness and disturbances attenuation,
RISE-based control has been implemented in diverse real-time applications. It is
noteworthy that RISE and RISE-based control has been modified in several direc-
tions. Upgrading this control law with nonlinear parameters may provide the ability
to compensate for more degrees of high nonlinearities in most systems [37]. Another
way is integrating RISE with other control frameworks like ADP/RL in this thesis,
which may bring in wider applications.

2.2.1.1 Background on RISE control

First, we examine a first-order single-input nonlinear system having the general form

m(η)η̇ + f(η) = u (2.21)

11
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where η(t) ∈ R is the system state, u(t) ∈ R is the control input, and m(η),
f(η) ∈ R are uncertain nonlinear function. It is assumed that m(η) and f(η) satisfy
the following assumptions

Assumption 2.1. The positive function m(η) is bounded

¯
m ≤ m(η) ≤ m̄(η) (2.22)

where m̄(η) ∈ R denotes a positive non-decreasing function, and
¯
m ∈ R denotes a

positive constant.

Assumption 2.2. The functions m(η) and f(η) are second-order differentiable with
respect to η(t) such that

m(η),
∂m(η)

∂η
,
∂2m(η)

∂η2
∈ L∞ if η(t) ∈ L∞

f(η),
∂f(η)

∂η
,
∂2f(η)

∂η2
∈ L∞ if η(t) ∈ L∞

(2.23)

Let ηd(t) ∈ R be a desired trajectory that is continuously differentiable up to its
third derivative, i.e.

diηd(t)

dti
∈ L∞, i = 0, 1, 2, 3 (2.24)

The tracking error e(t) ∈ R is defined as follows

e , ηd − η (2.25)

Our objective is to obtain asymptotic tracking with a continuous control law employ-

ing (2.24) and norm-based, inequality bounds on the functions ∂im(ηd)

∂ηid
and ∂if(ηd)

∂ηid
,

i = 0, 1, 2.

Remark 2.1. For simple structure, we have assumed m(η) and f(η) do not de-
pend explicitly on time or on unknown time-varying parameters. Yet, it should
be highlighted that the proposed control law can compensate for these problems if
the time-varying components satisfy second-order differentiability conditions like in
(2.23). Therefore, the functions m(η) and f(η) could be presented by m (η, θ1(t), t)
and f (η, θ2(t), t) where θi(t), i = 1, 2 refer to unknown time-varying parameter vec-
tors and other time-varying disturbances that may show up nonlinearly in the model.

RISE control equation that can accomplish the control objective is generally designed
as

u(t) = (ks + 1) e(t)− (ks + 1) e (t0) +

t∫
t0

[(ks + 1)αe(τ) + β sgn(e(τ))] dτ (2.26)

where ks, α, β ∈ R are positive control gains, t0 is the initial time, and sgn(·) denotes
the standard signum function. The condition for the control law of (2.26) to ensure
asymptotic tracking is that the control gains ks and β are chosen sufficiently large
relative to the norm of the initial tracking error and a desired trajectory-based
bound, respectively [36, 37]

ks >
1

4λ3

ρ0
2
(√λ2 (η(t0))

λ1

η0

)
(2.27)
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β > ‖Nd(t)‖∞ +
1

α

∥∥Ṅd(t)
∥∥
∞ (2.28)

Based on the stability analysis introduced in [36] and [37], the signal (2.26) has the
ability to learn the unknown system model.

Remark 2.2. The authors in [36] indicated that this concept is then developed to
higher-order, multi-input systems.

2.2.1.2 Time-varying RISE approach

The beginning structure in (2.26) can be separated into two parts: a linear feedback
part depending on the filtered error e, and a nonlinear signum function. The linear
part contains proportional and integral terms on the filtered error, which is related
to a PI controller but considering the filtered error instead of the position error. The
two linear control terms may result in degraded performance when coping with high
nonlinearity during critical dynamic operation. Moreover, they are considerably
sensitive to disturbances and limited in tuning abilities.

The idea in [37] is to provide the control law with nonlinear time-varying gains
instead of the proportional and the integral static feedback ones. Hence, the time-
varying feedback RISE controller is obtained as

u(t) = (Ks(·) + 1) e(t)− (Ks(t0) + 1) e(t0) +

t∫
t0

[(ks0 + 1)α(·)e(τ) + β sgn(e(τ))] dτ

(2.29)
with Ks(·) and α(·) are two nonlinear feedback functions designed as

Ks(·) ≡ Ks(e, γ1, δ1) =

{
ks0|e|γ1−1, |e| > δ1

ks0δ1
γ1−1, |e| ≤ δ1

(2.30)

α(·) ≡ α(e, γ2, δ2) =

{
α0|∫ e|γ2−1, |∫ e| > δ2

α0δ2
γ2−1, |∫ e| ≤ δ2

(2.31)

where ks0, α0, γ1, δ1, γ2, δ2 are positive parameters which need to be designed care-
fully. Particularly, the two parameters, γ1 and γ2, should be selected within the
intervals [0.5, 1] and [1, 1.5] respectively to match the desired performance.

The choice of γ1 within the interval [0.5, 1] can weaken the proportional gain Ks(·)
at great filtered error values and boost it at small ones (see Figure 2.2(a)). And, the
proportional gain remains constant at a maximum saturated value when the filtered
error stays within the narrow region [−δ1, δ1] around zero. It is worth noting that
the combined error provides information on both position and velocity errors. As
a result, this gain scheduling might lead to a quick transition of closed-loop system
states and beneficial damping.

The nonlinear feedback parameter α(·) changes as a function of the integral of the
filtered error (see Figure 2.2(b)), implying that α(·) is more involved in steady-state
filtered errors (errors that persist with time). Within the interval [1, 1.5], high inte-
gral gain is obtained for significant steady-state filtered errors, while small integral
gain is obtained for small ones. When this error stays within the small interval
[−δ2, δ2] around zero, the integral parameter does not vary. Thus, this change may
boost the tracking performance towards the reference point and additionally, deal
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(a) Ks(·) (b) α(·)

Figure 2.2: Functions of the control gains with respect to their arguments

with the integral windup problem as precluding the integral term from accumulating
around particular bounds.

By selecting γ1 and γ2 in their corresponding intervals, there exists globally bounded
nonlinear functions as follows

0 < Ksm , ks0 ‖e‖γ1−1
∞ ≤ Ks(·) ≤ ks0δ

ε1−1
1 , KsM (2.32)

0 < α2m , α20δ
γ2−1
2 ≤ α2(·) ≤ α20

∥∥∫ e∥∥λ2−1

∞ , α2M (2.33)

where ‖·‖∞ indicates the infinity-norm.

This time-varying version of RISE may improve the controller’s global tracking
efficiency and robustness to system uncertainties and parameter variation. It is
worth noting that the nonlinear function structure is not sophisticated to implement
in real-time experiments.

Theorem 2.1. The control law in (2.29) employed to the second-order nonlinear
MIMO system (extended from (2.21)) ensures that all the system signals are asymp-
totically stable with the appropriate choices of the control gains.

Proof. Please refer to [37] for details.

2.2.2 Disturbance observer-based control for nonlinear sys-
tems

The disturbance observer (DO) is introduced in this section to approximate system’s
disturbances/uncertainties. Under some situations, the DO error has been shown
to be exponentially stable [38]. The disturbance observer-based control (DOBC)
approach has two different features compared to other robust control schemes [18].
One feature is that DO-based compensation can be viewed as a “patch” for main
controllers that can guarantee good stability and tracking performance but have in-
considerable disturbance rejection and robustness against uncertainties. One benefit
is that the primary reputable controller, such as traditional flight control systems,
does not need to be changed. After the baseline controller is ideally designed, the
DO-based correction is added to improve the robustness and disturbance attenua-
tion. Instead of implementing a completely new and distinct control system that
necessitates a new verification and certification procedure, the DOBC verification
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may be built on top of the existing verification process to assure safety and relia-
bility. The other feature is that disturbance observer-based control (DOBC) is not
designed based on worst cases. Many current methods are worst case-based designs
(e.g. robust control) and have been stated as being “over-conservative”. In most
cases, promised robustness comes at the cost of deteriorated nominal performance.
With the DOBC approach, the nominal performance of the baseline controller is
maintained while encountering uncertainties and disturbances [39].

2.2.2.1 Nonlinear disturbance observer

A typical MIMO affine nonlinear system with combined disturbances is represented
as

Ẋ = F (X) +Gu(X)u+Gd(X)∆ (2.34)

where X ∈ Rn, u ∈ Rm,∆ ∈ Rl are the state vector, control input, and disturbance
vector variables. It is reasonable to assume that F (X), Gu(X), and Gd(X) are
smooth functions.

In [39] and [38], a nonlinear disturbance observer (NDO) was designed to estimate
unknown disturbances/uncertainties .{

∆̂ = y + P (X)

ẏ = −∂P (X)
∂X

(Gu(X)u+Gd(X)y +Gd(X)P (X) + F (X))
(2.35)

where ∆̂ is the estimation of the mismatched disturbances/uncertainties, y ∈ Rl

is the auxiliary variable which represents the internal dynamics of the nonlinear
observer, P (X) ∈ Rl is a design nonlinear function for observation efficiency. Define
the disturbance estimation error as

∆̃ = ∆− ∆̂ (2.36)

Assumption 2.3. The combined disturbance ∆ varies slowly over time, i.e., ∆̇ ' 0.

Remark 2.3. Under the assumption that the disturbances fluctuate slowly in rela-
tion to the dynamics of the observer (see Assumption 2.3), NDO has been shown to
have strict asymptotical convergence. It is worth noting that the observer (2.35) can
track certain fast time-varying disturbances with a bounded error if the derivative of
the disturbances is bounded [17].

Remark 2.4. The combined disturbances would depend on the states in the pres-
ence of uncertainties, which can be reasonably approximated if the DO dynamics are
quicker than the closed-loop dynamics. The state observer-based control methods can
be justified on the same grounds.

Theorem 2.2. For system (2.34), the disturbance observer is given as (2.35). If
H(X) = (∂P (X)/∂X )Gd(X) is positive definite then the disturbance observer can
exponentially track the disturbance, i.e., the disturbance estimation error ∆̃ is expo-
nentially stable, ∀X.

Proof. A Lyapunov function candidate is chosen as

Φ =
1

2
∆̃
T

∆̃ (2.37)
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Differentiation of the Lyapunov function with respect to time gives

Φ̇ = −∆̃
T

(ẏ + Ṗ (X))

= ∆̃
T ∂P

∂X
(Gdy +GdP + F (X) +Guu)− ∆̃

T ∂P

∂X
Ẋ

(2.38)

Combining with (2.34) yields

Φ̇ = −∆̃
T

(ẏ + Ṗ (X))

= ∆̃
T ∂P

∂X
(Gdy +GdP + F (X) +Guu)− ∆̃

T ∂P

∂X
(F (X) +Guu+Gd∆)

= ∆̃
T ∂P

∂X
Gd(∆̂−∆)

= −∆̃
T ∂P

∂X
Gd∆̃

(2.39)

As H(X) = ∂P (X)
∂X

Gd(X) is positive definite, the (2.39) satisfies Φ̇ ≤ −2λmin(H)Φ
which means that Φ(t) ≤ Φ(0)e−2λmin(H)t. Therefore, the disturbance observer error
∆̃ is exponentially stable, as t→∞.

Remark 2.5. From Theorem 2.2, it is clear that Assumption 2.3 is the guarantee
of the exponential stability of disturbance estimation error. If ∆̇ 6= 0, then Φ̇ =

∆̃
T

∆̇− ∆̃
T ∂P
∂X
Gd∆̃. Therefore, the condition ∆̇ = 0 is considered in this work.

2.2.2.2 Disturbance observer-based control

Remark 2.6. In the case of mismatched disturbances, the NDO (2.35) is appro-
priate. However, because the disturbances may not be in the same channels as the
control inputs, the NDO estimates cannot be used to compensate for them directly.

Generally, the effect of the mismatched disturbances cannot be erased from state
variables [38]. In [39], based on the estimated disturbance from NDO (2.35), a
combined control input is designed as

u = r(X) + d(X)∆̂ (2.40)

By constructing a proper compensation gain d(X), this control law may eliminate
the combined disturbance’s effect from the output. As a result, the DO-based control
(DOBC) strategy’s application fields will be significantly expanded.

It is worth noting that the disturbance compensation term d̂(X)∆ in (2.40) is ex-
clusively meant for disturbances, implying that the NDO only functions if and only
if disturbances exist. As a result, it simply acts as a ”patch” for the current con-
troller, enhancing its disturbance attenuation and robustness to uncertainties. Then,
under disturbances and uncertainties, the closed-loop system performs its nominal
performance.

Theorem 2.3. The closed-loop system consists of a nonlinear system (2.34), com-
bined control law (2.40) and NDO (2.35) is ISS.

Proof. For more details, please refer to [39].
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The following is a general NDO-based robust control design technique for system
(2.34) with disturbances:

Algorithm 2.2: DOBC design procedure

1. Design a nonlinear feedback controller as a preliminary step for achieving
stability and performance requirements without considering disturbances or
uncertainties.

2. Consider together the external disturbances and the impact of the uncertain-
ties and then construct an NDO to estimate the combined disturbances.

3. Implement the general NDO-based robust controller by combining the nonlin-
ear feedback controller and the DO-based compensation term with an appro-
priate gain to accomplish target performance specification for the nonlinear
system with disturbances.
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Chapter 3

Time-Varying RISE-Based
Reinforcement Learning Control
of Nonlinear Systems

This work proposes a new structure ARL-based robust control scheme for second-
order nonlinear MIMO systems. RISE algorithm has the ability to learn the un-
known model uncertainties and external disturbances. RISE control law with sliding
variables guarantees tracking performance under restricted assumptions on the un-
certainties and nonlinearities of the system. The time-varying RISE is constructed
by replacing static feedback gains in the original RISE control law with nonlin-
ear ones as functions of system variables. The concept is based on that nonlinear
time-varying gains improve overall efficiency by compensating for a variety of nonlin-
earities and additive disturbances. In addition, ARL is employed to obtain optimal
tracking performance for the uncertain/disturbed nonlinear robot system. The HJB
equation is solved by an iterative method using the online actor-critic ADP tech-
nique based on neural networks. Matlab simulation results on a 2-DOF robot arm
demonstrate the improved performance of the time-varying RISE-based RL scheme
in comparison with the original RISE-based RL controller.

3.1 Problem formulation

The dynamic model of an n-link robot manipulator can be given in the Lagrange
form

M(η)η̈ + C(η, η̇)η̇ +G(η) + F (η̇) + d(t) = τ(t) (3.1)

where η ∈ Rn vector of joint variables, M(η) ∈ Rn×n is a generalized inertia matrix,
C(η, η̇) ∈ Rn×n is a generalized Coriolis/centripetal matrix, G(η) ∈ Rn is gravity
forces, F (η̇) ∈ Rn is a generalized friction, d(t) is disturbance vector, τ(t) is the
vector of control inputs.

The considered robot manipulator belongs to the class of Euler-Lagrange systems
[40], which has the property that the inertia symmetric matrix M(η) is positive
definite, and satisfies ∀ξ ∈ Rn

¯
m‖ξ‖2 ≤ ξTM(η)ξ ≤ m̄(η)‖ξ‖2

ξT (Ṁ(η)− 2C(η, η̇))ξ = 0
(3.2)

where m̄(η) ∈ R is a positive non-decreasing function with respect to η and
¯
m ∈ R
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is a positive constant. And, ‖·‖ stands for the classical Euclidean norm. There are
several assumptions that will be employed during stability analysis.

Assumption 3.1. The reference/desired trajectory ηd(t) and its first, second, third
and fourth time derivatives exist and are bounded.

Assumption 3.2. The disturbance vector d(t) and its time derivatives ḋ(t) are
bounded by known constants.

Assumption 3.3. Provided that η(t), η̇(t) ∈ L∞, then C(η, η̇), F (η̇), G(η) and
their first, second partial derivatives of with respect to η(t) and of the derivatives of
C(η, η̇), F (η̇) with respect to η̇(t) exist and are bounded.

The control objective is that the system precisely follows a desired time-varying
trajectory nref (t) under dynamic uncertainties and disturbances by making use of
the background of online ARL-based control design and disturbance attenuation
method.

Inheriting the framework of sliding mode control (SMC), the sliding variable is
written as

s(t) = ė1 + α1e1 (3.3)

where e1(t) = ηref − η, α1 ∈ Rn×n > 0, and the corresponding sliding surface is

S = {e1(t) ∈ Rn : s(t) = 0} (3.4)

Substituting the sliding variable into the system model (3.1), the dynamics of s(t)
is obtained

Mṡ = −Cs− τ + f + d (3.5)

where the nonlinear function f(η, η̇, ηref , η̇ref , η̈ref ) is defined as follows

f = M(η̈ref + α1ė1) + C(η̇ref + α1e1) +G+ F (3.6)

Remark 3.1. The sliding variable contributes to the reduction of the order of uncer-
tain/disturbed robot manipulator systems. The achieved first-order continuous-time
nonlinear autonomous system facilitates the adaptive reinforcement learning algo-
rithms. Moreover, the nonlinear function f(·) and the external disturbance d(t) will
be compensated by the design of time-varying RISE, which is presented in the next
section.

3.2 Adaptive reinforcement learning of nonlinear

systems based on time-varying RISE

3.2.1 On-policy actor-critic architecture-based algorithm

With the robot manipulator described in (3.5), design the control input as follows

τ = f + d− u (3.7)

where the term u deals with adaptive optimal control problem based on ARL and
the remaining term f+d will handled by time-varying RISE framework later. Then,
the dynamics in (3.5) is rewritten as

Mṡ = −Cs+ u (3.8)
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Combining (3.3) and (3.8), the time-varying model of the manipulator is obtained:

ẋ =

[
−α1e1 + s

−M(ηref − e1)−1C(ηref − e1, η̇ref + α1e1 − s)s

]
+

[
0n×n
M−1

]
u (3.9)

where x = [eT1 , s
T ]
T

, and the infinite-horizon scalar cost function to be minimized is

J(x, u) =

∞∫
0

(
1

2
xTQx+

1

2
uTRu)dt (3.10)

where Q ∈ R2n×2n and R ∈ Rn×n are positive definite symmetric matrices.

The next step is to define an augmented state X(t) for system transformation,
which helps to avoid the time-dependent systems. Therefore, under the important
assumption that the reference trajectory ηref (t) satisfies η̇ref (t) = fref (ηref ), the
ARL is employed to find the optimal policy for the autonomous affine state-space
model:

Ẋ = A(X) +B(X)u (3.11)

with Ẋ = [xT , ηref
T , η̇ref

T , η̈ref
T ] and the matrices:

A(X) =


−α1e1 + s

−M(ηref − e1)−1C(ηref − e1, η̇ref + α1e1 − s)s
fref (ηref )

ḟ ref (ηref )

 (3.12)

B(X) =

 0
M−1

0

 (3.13)

The corresponding infinite horizon scalar cost function to be minimized is defined
as follows

J(X, u) =

∞∫
t

(
1

2
XTQTX +

1

2
uTRu)dτ (3.14)

where

QT =

[
Q 0
0 0

]
(3.15)

In the first step of RL employing procedure, to guarantee the stability of adap-
tive optimal control structure, considering the admissible policy u(X) which was
described thoroughly in [21, 22, 25].

Now, the optimal control objective is to find an admissible control input u∗(X) so
that the infinite horizon cost function (3.14) associated with the affine system (3.11)
is minimized.

With the optimal value function V ∗(X) defined in (2.15), based on the significant
works of [21] and [25] in ADP and RL, the optimal feedback controller u∗(X) is
given as (2.17)

u∗(X) = −1

2
R−1BT (X)

∂V ∗(X)T

∂X
u∗(X) (3.16)

The Hamiltonian of the system in (3.11) is derived as

H
(
X, u,

∂V

∂X

)
=
∂V

∂X
(A(X) +B(X)u) +

1

2
XTQTX +

1

2
uTRu (3.17)
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The optimal value function V ∗(X) in (2.15) and the corresponding optimal policy
u∗(X) in (3.16) satisfy the HJB equation H

(
X, u∗, ∂V

∗

∂X

)
= 0.

Because it is difficult to explicitly solve the HJB equation, a typical RL/ADP-based
method is used, that is actor-critic NNs architecture. The optimal cost function and
the optimal control is represented using a NN [30]:

V ∗(X) = W Tψ(X) + εv(X) (3.18)

u∗(X) = −1

2
R−1BT (X)

(( ∂ψ
∂X

)T
W +

(∂εv(X)

∂X

)T)
(3.19)

where W ∈ RN is vector of unknown ideal NN weights, N is the number of neurons,
ψ(X) ∈ RN is a smooth basis function vector, and εv(X) ∈ R is the function
reconstruction error.

The approximate solution of (3.18) is obtained through NN updating laws without
the requirement of solving the HJB equation (see [30] for more details). Furthermore,
the smooth basis function is chosen depending on the characteristics of the robot
manipulator (see Section 3.3.1). In [30], based on the Weierstrass approximation

theorem, NNs can uniformly approximate V ∗(X) and ∂V ∗(X)
∂X

with εv(X), ∂εv(X)
∂X

→ 0
as N →∞.

With a fixed number of neurons N , separate the critic V̂ (X) and the actor û(X)
approximation as

V̂ (X) = Ŵ T
c ψ(X) (3.20)

û(X) = −1

2
R−1BT (X)

( ∂ψ
∂X

)T
Ŵ a (3.21)

The adaptation of critic Ŵ c and actor Ŵ a weights are simultaneous and proposed
to minimize the Bellman error defined as

δhjb = Ĥ
(
X, û,

∂V̂

∂X

)
−H∗

(
X, u∗,

∂V ∗

∂X

)
= Ŵ T

c σ +
1

2
XTQTX +

1

2
ûTRû

(3.22)

with σ(X, û) = ∂ψ
∂X

(A+Bû) is the regression vector of the critic. Equivalent to the
work in [30], the least-squares update of critic weights is given as

d

dt
Ŵ c = −kcλ

σ

1 + υσTλσ
δhjb (3.23)

where kc and υ are constant positive gains, and λ ∈ RN×N is a symmetric estimation
gain matrix satisfying

d

dt
λ = −kcλ

λσT

1 + υσTψσ
λ (3.24)

It is important to make sure λ(t) is positive definite, which prevents the covariance
wind-up problem [30].

ϕ1I ≤ λ(t) ≤ ϕ0I (3.25)

Unlike the critic, the actor adaptation law is based on gradient descent method:

d

dt
Ŵ a = − ka1√

1 + σTσ

∂ψ

∂X
BR−1BT ∂ψ

T

∂X

(
Ŵ a − Ŵ c

)
δhjb − ka2

(
Ŵ a − Ŵ c

)
(3.26)
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PE conditions of the regression vector of the critic are crucial for the adaptive control
to converge to the optimal solution. Unlike linear systems, where PE conditions
refer to the external input’s adequate richness, there has been no reliable technique
to assure PE conditions in nonlinear problems until now. In the initial stage of
the learning process, an exploratory signal n(t) consisting of sinusoids of different
frequencies is introduced to the control to guarantee PE quality.

Remark 3.2. Unlike the work in [30], the identifier design is not employed in
this structure which concentrates on the robot manipulator control design. In addi-
tion, the learning technique of synchronous/simultaneous AC architecture (3.23) and
(3.26) is different from data-driven online IRL in [28] and [41]. It is worth noting
that a clear functionalized exploratory signal, as well as clear initial conditions of
the system, is described in this work instead of random variables, which clarifies the
learning process and contributes to the comparison of different approaches. These
will be described in Section 3.3.1. It is important to approach robot manipulator
dynamics as an affine system (3.11) in order to facilitate the ARL algorithm for the
system in the tracking control problem.

3.2.2 Time-varying RISE-based optimal control

The last step is to complete the control design in (3.7) by integrating the estimation
of ε = f + d based on the time-varying RISE framework in [37]. The proposed
time-varying RISE structure is presented as in Section 2.2.1.2

ε(t) = (Ks(·) + 1)s(t)− (Ks(t0) + 1)s(0) + ρ(t) (3.27)

d

dt
ρ = (ks0 + 1)α(·)s(t) + β sgn(s(t)) (3.28)

In summary, the control input is described as

τ = ε− u+ n (3.29)

Remark 3.3. Compared with the proposed controller in [37], this work considers
the adaptive optimal control problem of nonlinear systems and makes use of RISE
to learn the disturbances/uncertainties. Additionally, due to the time-dependent
property, it is not able to directly apply ARL strategy in the model (3.9). Therefore, it
is proposed to employ a transformation method to obtain the augmented autonomous
system (3.11) which facilitates the ARL algorithm. The authors in [30] applied an
online ARL-based technique for first-order continuous-time nonlinear autonomous
system with no external disturbance. In this work, a disturbed/uncertain manipulator
is introduced by second-order continuous-time nonlinear systems (3.1) and the sliding
variable helps to achieve the reduced-order system model.

Remark 3.4. Other important improvements of this work in comparison with [34]
are the time-varying RISE utilization and clear presentation of initial conditions
and exploratory signals. This thesis improves the standard RISE framework by im-
plementing time-varying nonlinear functions, which generalizes the control problems.
Including the above-mentioned time-varying control gains in the classic equation of a
RISE controller may boost the controller’s global tracking efficiency and robustness
to system uncertainties and disturbances. It is also significant that the nonlinear
functions’ structure is easy enough to incorporate in real-time experiments. More-
over, the random values in [34] are replaced by clear ones (see Section 3.3.1), which
facilitates the comparison with the work in [34].
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3.3 Simulation results

3.3.1 Simulation setup

This section describes the evaluation of the performance of the proposed controllers
through simulation tests. Both the original RISE and the proposed time-varying
RISE methods with ARL were implemented on the two-link robot manipulator. A
comparison between the two employed controllers is studied in the next sessions.

Consider a 2-DOF planar robot manipulator system, which is modeled by Euler-
Lagrange formula (3.1). With n = 2, the described matrices in (3.1) can be given
as

M(η) =

[
ζ1 + 2ζ2 cos η2 ζ3 + ζ2 cos η2

ζ3 + ζ2 cos η2 ζ3

]
G(η) =

[
ζ4 cos η1 + ζ5 cos (η1 + η2)

ζ5 cos (η1 + η2)

]
C(η, η̇) =

[
−ζ2 sin η2η̇2 −ζ2 sin η2 (η̇1 + η̇2)
ζ2 sin η2η̇1 0

] (3.30)

where ζi, i = 1...5 are system parameters depending on gravitational acceleration
and mechanical description. These constant parameters can be selected as

ζ1 = 5, ζ2 = 1, ζ3 = 1, ζ4 = 1.2, ζ5 = g . (3.31)

The simulation mission is to verify the improved performance of the proposed track-
ing controllers and to give clear comparison between the two approaches. The de-

sired trajectory is set as ηref =
[
3sin(t) 3cos(t)

]T
with the vector of disturbances

is introduced as d (t) =
[
50sin(t) 50cos(t)

]T
.

The optimal control problem is set by constructing the general performance index
(3.14) with the positive-definite symmetric matrices in as

Q =


40 2 −4 4
2 40 4 −6
−4 4 4 0
4 −6 0 4

 , R =

[
0.25 0

0 0.25

]
(3.32)

In sliding variable s(t) = ė1 +α1e1, the control parameter α1 ∈ Rn×n are selected to
be a constant positive definite matrix:

α1 =

[
15.6 10.6
10.6 10.6

]
(3.33)

The feedback gains in the standard RISE law (2.26) are designed as

ks =

[
210 0
0 210

]
, α =

[
9.3 0
0 149

]
, β = 5 . (3.34)

and the time-varying RISE parameters as in (2.29), (2.30), and (2.31)

ks0 =

[
200 0
0 200

]
, γ1 = 0.96, δ1 = 0.05,

α0 =

[
5 0
0 80

]
, γ2 = 1.6, δ2 = 2.81,

β = 5 .

(3.35)
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The learning parameters in actor-critic architecture are chosen guaranteeing (3.23)–
(3.26) as

kc = 800, υ = 1, ka1 = 0.02, ka2 = 2 . (3.36)

On the other hand, according to [34], the value function V in (3.18) can be solved
precisely as

V = 2x2
1 − 4x1x2 + 3x2

2 + 2.5x2
3 + x2

3 cos (η2) + x3x4 + x3x4 cos (η2) + 0.5x2
4 (3.37)

The choice of ψ(X) in (3.18) can be arbitrary. However, for the comparison between
approximate result from learning process and the exact result in (3.37), ψ(X) should
be chosen as

ψ(X) =
[
x2

1, x1x2, x
2
2, x

2
3, x

2
3 cos (η2) , x3x4, x3x4 cos (η2) , x2

4

]T
(3.38)

Considering (3.37), the exact value of Ŵ c in (3.20) and Ŵ a in (3.21) are

W =
[

2 −4 3 2.5 1 1 1 0.5
]T

(3.39)

In the simulation, the initial covariance matrix is selected as

λ(0) = diag
(

100 300 300 1 1 1 1 1
)

(3.40)

All the NN weights Ŵ c, Ŵ a are initialized as

Ŵ c(0) =
[
0.6 0.1 0.7 0.5 0.5 0.5 0.7 0.6

]T
Ŵ a(0) =

[
0.6 0.2 0.2 0.9 1 1 0.4 0.2

]T (3.41)

and the states and their first-time derivative are initialized as

q(0) =
[
0.5 0

]T
q̇(0) =

[
0.9 0.8

]T (3.42)

To ensure PE qualitatively, an exploratory signal consisting of sinusoids of vary-
ing frequencies is added to the control for the first 25 seconds after 35 seconds of
simulation time.

n(t) =
[
n1(t) n2(t)

]T
n1(t) = 75

(
sin (−29t)2 cos(28t) + sin (−19t)2 cos(22t) + sin(20t) cos(16t)

)
,

n2(t) = 75
(
sin (29t)2 cos(27t) + sin (23t)2 cos(19t) + sin(16t) cos(15t)

)
.

(3.43)

In order to quantify the performance of the two control algorithm, it is impor-
tant to define a certain performance index. Main objective is to improve tracking
accuracy of the robot manipulator using the proposed controller. Hence, the Root-
Mean-Square Error (RMSE) criterion is an accuracy evaluation tool mainly used to
evaluate differences between the desired trajectory and the actual one.

RMSE =

√√√√ 1

N

N∑
i=1

(
e2

1,1(i) + e2
1,2(i)

)
(3.44)

where e1,1, e1,2 refers to the joints tracking errors and N is the number of the col-
lected samples through the whole process.
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To estimate the energy consumption for each controller, the input-torques-based
criterion is defined as

ET =
2∑
i=1

N∑
j=1

|τi(j)| (3.45)

where the control effort ET is the total summation of the absolute value of the input
signal produced by the two actuators.

To determine the convergence error of the training process, we calculate the differ-
ences between trained weights and precise weights.

CE =
∣∣∣Ŵ −W ∣∣∣ (3.46)

The next session will quantitatively and visually demonstrate the simulation results
and comparison between the two methods.

3.3.2 Result analysis

Table 3.1: Control performance evaluation for both controllers

Original Optimal RISE Optimal Varying RISE Comments

Weights

1.9550 2.0000

-4.0293 -4.0000

2.9487 3.0000

2.4950 2.5000

0.9946 1.0000

0.9915 1.0000

0.9828 1.0000

0.4999 0.5000

1.9687 2.0000

-4.0166 -4.0000

3.0277 3.0000

2.4987 2.5000

0.9996 1.0000

0.9998 1.0000

0.9996 1.0000

0.4991 0.5000

41.63% better

CE 0.0771 0.0450
RMSE 0.2073 0.2072 Similar
ET 2.4767e+06 2.4637e+06 0.52% better

Table 3.1 notes some explicit information to compare the original RISE-based ARL
(left sub-figures) and the proposed time-varying RISE methods with ARL (right sub-
figures) were implemented on the two-link robot manipulator. The learned weights
and ideal weights of each controller are shown together for convenient comparison.
Some criteria indexes are calculated as defined in the previous section.

Regarding tracking errors RMSE, both static and varying RISE-based controllers
present almost the same performance (0.2073 and 0.2072 respectively). Following the
reference trajectory shown in Figure 3.1, the joint tracking errors for both controllers
are calculated and depicted in Figure 3.2. The system rapidly follows the desired
trajectories without overshoot, which demonstrates excellent tracking performance.
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Figure 3.1: Tracking trajectories of the two controllers

Figure 3.2: Tracking errors of the two controllers

It is worth noting that there are some minor variations in tracking errors of both
controllers in the first 25 seconds because sinusoidal probing noises are injected
directly to control input during the exploration stage.

An important note is an improvement in terms of energy consumption which is a
0.52% reduction with the novel method.

Because of the extended nonlinear feedback gains and their different behavior, the
proposed time-varying RISE-based ARL control improves the original RISE control
in terms of precision and efficiency.

Figure 3.3 shows that both methods work similarly when it comes to estimating
uncertainties and disturbances. Because of the initial exploration process, it is diffi-
cult to include complicated probing signals in the estimation of the RISE algorithm.
Following that, both methods’ calculation of uncertainties and disturbances is bril-
liant.

In general, for both methods, the weight convergences in approximating optimal
value function using NN are all excellent (see Table 3.1). The weights within the
varying RISE ARL-based approach converges precisely to the solution in (3.39)
while the standard method shows 41.63% less precise but acceptable final weight
values. The convergence processes of actor and critic weights in training NNs are
shown from Figure 3.4 and Figure 3.5. It is clear that the proposed time-varying
RISE-based control method brings in faster and smoother convergences, compared
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Figure 3.3: Estimation of the two controllers

Figure 3.4: Actor weights of the two controllers

Figure 3.5: Critic weights of the two controllers

to the oscillatory ones presented by the standard RISE method.
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3.4 Summary

This study addresses a robust optimal control problem for a class of uncertain non-
linear systems with unknown disturbances. In this work, after defining the sliding
variable, an online ARL is presented to achieve optimality for the autonomous sys-
tem. AC NNs are considered to approximate the HJB equation. Based on the
RISE method, uncertain/disturbed components of the systems are estimated, which
guarantees the trajectory tracking objective. Moreover, this work proposes a new
structure where the time-varying RISE is combined with the ARL method to obtain
closed-loop performance improvements. Matlab simulation results on a 2-DOF
robot arm demonstrate the improved performance of the time-varying RISE-based
RL scheme in comparison with the original RISE-based RL controller.
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Chapter 4

Disturbance Observer-Based
Reinforcement Learning Control
of Nonlinear Systems

This chapter presents a self-learning control method for nonlinear systems with
unknown disturbances and uncertainties. Firstly, kinematic and feed-forward struc-
tures are employed to achieve an autonomous affine system from the original surface
vessel model. The optimality of the transformed system is guaranteed by the ARL
technique. Additionally, a nonlinear disturbance observer is implemented in this
study to estimate the unknown disturbances and uncertainties of the system. Adap-
tive optimal control combining with disturbance compensation ability improves the
performance of the closed-loop system.

4.1 Problem formulation

Figure 4.1: Coordinate frames of an SV

From Figure 4.1, η = [x, y, ψ]T denotes the 3-DOF position (x, y) and heading
angle (ψ) of the SV in the earth-fixed inertial frame, and ν = [u, v, r]T denotes the
corresponding linear velocities (u, v) (surge and sway velocities), and yaw angular
rate (r), in the body-fixed frame. The general model of an SV sailing in a planar
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space neglecting the motions in heave, pitch and roll can be described as follows [42]{
η̇ = R(η)ν(t)

Mν̇ = τ + ∆(η, ν)− f(η, ν)
(4.1)

with dynamics f(η, ν) is modeled by

f(η, ν) = C(ν)ν +D(ν)ν + g(η, ν) (4.2)

where τ ∈ R3 is control input. The other input ∆(η, ν) implies model uncertainties
and disturbances, which is slowly time varying. The term g(η, ν) denote the restoring
forces and moments due to gravitation/buoyancy. The authors in [42] compute and
explain in detail the matrices M , C(ν), and D(ν).

A surface vessel with three degrees of freedom can be considered without the restor-
ing forces and moments due to gravitation/buoyancy, i.e., g(η, ν) = 0. However,
noise from the environment can be affected to tilt the ship, then force and thrust
will appear to bring the ship back into position balance. Therefore, there is no loss
of generality while formula (4.1) remains with component g(η, ν).

The term R(η) is a rotation matrix given by

R(η) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (4.3)

with the following property:

‖R(η)‖ = 1 and RT (η)R(η) = I (4.4)

Assumption 4.1. Assuming that ηd is the bounded desired trajectory, and there
exists a Lipschitz continuous trajectory planning function hd(·) such that

η̇d = hd(ηd) (4.5)

The objective of this work is to propose an intelligent control scheme for the SV
models (4.1) with unknown combined disturbances including uncertainties and ex-
ternal disturbances such that the reference positions and attitude can be tracked
accurately and optimally.

4.2 Kinematic and feed-forward control structure

In this section, the outer loop including kinematic and feed-forward control structure
is introduced, which contributes to the transformation from the original SV system
to an affine one with autonomous property, facilitating ARL algorithm and DO
design.

To quantify the tracking objective, one defines a position tracking error as

eη = η − ηd (4.6)

In a SV model (4.1), the kinematic subsystem is known as η̇ = R(η)ν. From (4.6),
the kinematic error dynamics is

ėη = R(η)ν − η̇d (4.7)
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Therefore, design the kinematic control law νd to guarantee asymptotic stability of
(4.7) as follows

νd = R−1(η)(η̇d − βηeη) (4.8)

where βη is a positive definite matrix. Then, define the body-fixed velocity error:

eν = ν − νd (4.9)

Then, the dynamics of eν can be given as:

ėν = −M−1f(η, ν)− ν̇d +M−1τ +M−1∆ (4.10)

It is important to obtain the autonomous systems in order to utilize ARL structure.
Therefore, a feed-forward term τff for stationary operation is added into the control
input

τ = u+ τff (4.11)

τff = Mν̇d + f(ηd, νd) (4.12)

The robust optimal control law u will be designed later employing ARL algorithms
and disturbance observer.

Considering systems (4.7) and (4.10) under the control law (4.11) and (4.12) without
g(η, ν) gives a dynamic equation:

Ẋ =

M−1f
(
νd(eη, nd)

)
−M−1f

(
eν + νd(eη, nd)

)
R(eη + ηd)eν − βηeη

η̇d

+

M−1

0
0

 (u+ ∆) (4.13)

where X = [eTν eTη ηTd ]
T

is an augmented state for the dynamic subsystem of SV.

Combining with (4.5), the autonomous system can be obtained as

Ẋ =

M−1f
(
νd(eη, nd)

)
−M−1f

(
eν + νd(eη, nd)

)
R(eη + ηd)eν − βηeη

hd(ηd)

+

M−1

0
0

 (u+ ∆) (4.14)

The system (4.14) can be represented concisely as

Ẋ = F (X) +Gu(X)u+Gd(X)∆ (4.15)

where

F (X) =

M−1f
(
νd(eη, nd)

)
−M−1f

(
eν + νd(eη, nd)

)
R(eη + ηd)eν − βηeη

hd(ηd)


Gu(X) = Gd(X) =

M−1

0
0

 (4.16)

and in general, X ∈ Rn, u ∈ Rm, ∆ ∈ Rl, F (X) ∈ Rn, Gu(X) ∈ Rn×m, Gd(X) ∈
Rn×l.

Remark 4.1. The kinematic and feed-forward control structure contribute to the
system transformation, which satisfies the situation of ARL algorithms. It is worth
noting that (4.15) is a general MIMO affine nonlinear system with combined dis-
turbances. In fact, most of the problems in automobile, robotics, aerospace, and
other engineering systems can be described by the nonlinear control-affine equations.
Therefore, the work in the next sections can be implemented for a class of nonlinear
systems.
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For the nonlinear systems (4.15), the control input is expected to be designed as

u = d(X)∆̂ + ur(X) (4.17)

where d(X) is the disturbance compensation gain to be designed, ∆̂ is the estima-
tion of disturbances/uncertainties based on disturbance observer, and ur(X) is the
optimal control policy with the absence of disturbances. The two parts of the control
input (4.17) will be analyzed in the subsequent sections.

Remark 4.2. The feed-forward design (4.12) compensated the effects of inertia,
gravity, Coriolis, and friction which cannot be modified by the robust optimal design
stage [43]. Additionally, the disturbance observer rejects the effects of unknown
disturbances and uncertainties, which results in a nominal system. Therefore, it is
reasonable that the cost function is only considered for the auxiliary control ur(X) .

4.3 Adaptive reinforcement learning of nonlinear

systems based on disturbance observer

In this section, an on-policy iterative optimal control method is applied to the sys-
tem to obtain ur(X). The benefit of this on-policy iterative algorithm is not only
that each iterative control policy makes the closed-loop system without disturbances
asymptotically stable and UUB stable in the case the system is affected by distur-
bance ∆, but the control policy will also convergence to the optimal control policy
of this system with the quadratic performance index J ∈ R to be minimized and
constrained by (4.15).

4.3.1 On-policy actor-critic architecture-based algorithm

At first, let the system input be u = ur(X), the performance index function for
system (4.15) without disturbances is generally defined as follows

J(X, ur) =

∞∫
0

(XTQTX + uTr Rur)dτ (4.18)

where

QT =

[
Q 0
0 0

]
(4.19)

along with Q and R are positive definite symmetric matrices. Given the performance
index J(X, ur), the control objective is to find the auxiliary control input ur(X) that
minimizes (4.18) with system (4.15), which is known as as ur(X) optimal control.

Remark 4.3. This is the same problem encountered in the previous analysis. The
details of online policy iteration algorithm and AC structure are presented in Sec-
tion 2.1.1 and Section 3.2.1. Let the iterative control be obtained by ukr(X), V k be
the unique positive-definite function satisfying the Bellman equation (BE) for non-
linear systems (4.15) with ∆ = 0. If the input control for system (4.15) with ∆ = 0
is ukr(X), then the iterative control ukr(X), k = 1, 2, ... makes the closed-loop system
asymptotically stable. Moreover, the optimal control u∗r(X) can be achieved by the
iteration, that is ukr(X) = u∗r(X) as k →∞ [44].
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The on-policy actor-critic algorithm results in the neural network-based estimation
of V (X) and ur(X) as follows:

V̂ (X) = Ŵ c

T
Ψ(X) (4.20)

ûr(X) = −1

2
R−1GT (X)(

∂Ψ

∂X
)
T

Ŵ a (4.21)

The actor and critic networks are both tuned based on the minimization of the TD
error which can be written as

δhjb = Ŵ T
c σ(X, ûr) +XTQTX + ûTr Rûr (4.22)

4.3.2 Disturbance observer-based robust optimal control

In this section, the disturbance observer analyzed in Section 2.2.2 is implemented
for the system (4.15). According to (2.35), we have{

∆̂ = y + P (X)

ẏ = −∂P (X)
∂X

(Gu(X)u+Gd(X)y +Gd(X)P (X) + F (X))
(4.23)

Based on Theorem 2.2, the disturbance observer can identify the disturbances. Fur-
thermore, ûr(X) is the approximate optimal control policy u∗r(X). Then the system
(4.15) with the control input (4.17) is

Ẋ = F (X) +Gu(d∆̂ + ur) +Gd∆

= F (X) +Guûr +Gud∆̂ +Gd(∆̃ + ∆̂)
(4.24)

Theorem 4.1. Let the closed-loop system be as (4.24), the approximate optimal
control be as (4.21). Let d(X) = −G+

uGd then the observation error ∆̃ are asymp-
totically stable, the closed-loop system state X and the weight errors are UUB.

Proof. For more details, please see [44].

4.4 Simulation results

4.4.1 Simulation setup

In this section, a simulation example is implemented to verify the effectiveness of
the developed procedures on a surface vessel system with a scale factor of 1 : 75.
The mass of the model ship is 21 kg, its length and width are 1.2 m and 0.3 m,
respectively. The parameters of each surface vessel are chosen as with the following
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inertia, Coriolis, damping matrices:

M =

20 0 0
0 19 0.72
0 0.72 2.7


C(ν) =

 0 0 −19v − 0.72r
0 0 20u

19v + 0.72r −20u 0


D(v) =

d11 0 0
0 d22 d23

0 d32 d33


d11 = 0.72 + 1.3 |u|+ 5.8u2

d22 = 0.86 + 36 |v|+ 3 |r|
d23 = −0.1− 2 |v|+ 2 |r|
d32 = −0.1− 5 |v|+ 3 |r|
d33 = 6 + 4 |v|+ 4 |r|

(4.25)

The control objective is to drive the surface vessel to track the desired time-varying
trajectory generated as

ηd(t) = [12 sin(0.2t) −12 cos(0.2t) 0.2t]
T

(4.26)

while guaranteeing the optimal performance (4.18) in the presence of unknown dis-
turbances/uncertainties deployed as

∆ = 30

 4 sin(t+ 1.2) + 0.5ẋ
0.7 sin(t+ 0.5) + 0.5ẏ

0.25 cos t+ 0.5ψ̇

 (4.27)

Let the initial conditions be

η(0) = [1 −9 0.5]
T

ν(0) = [3 3 3]
T

Ŵ c(0) = 0.03× 112× 1

Ŵ a(0) = 0.03× 112× 1

(4.28)

The design parameters consist of kinematic control law, feed-forward, ARL algo-
rithm being chosen as

βη = 0.5 kc = 1 ka1 = 1 ka2 = 2
υ = 5 ϕ0 = 20 ϕ1 = 12 Q = I3 R = I3

(4.29)

For the training of actor-critic architecture to achieve ARL-based optimal control,
the dual NNs are designed with 12 nodes. The smooth basis/activation function
vector Ψ(X) ∈ R12 is chosen as

Ψ(X) = [X2
1 , X1X2, X1X3, X

2
2 , X2X3, X

2
3 ,

X2
1X

2
7 , X

2
2X

2
8 , X

2
3X

2
9 , X

2
1X

2
4 , X

2
2X

2
5 , X

2
3X

2
6 ]T

(4.30)

For constructing the disturbance observer, let

P (X) = 390

 100X1

57X2 + 2.16X3

1.44X2 + 5.4X3

 (4.31)
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then ∂P/∂X = 390
[
100 0 0; 0 57 2.16; 0 1.44 5.4

]T
,

and H = (∂P/∂X)Gd = 390
[
5 0 0; 0 3 0; 0 0 2

]T
is positive.

4.4.2 Result analysis

This part presents remarkable simulation outcomes of a robust optimal control al-
gorithm for a surface vessel via online policy iteration and disturbance observer.
Results of the ARL method for the same vessel without disturbance observer are
introduced in the left column of each figure for a reasonable comparison.

Figure 4.2: Tracking trajectories of the two approaches

Figure 4.3: Tracking trajectories of the two approaches

The trajectory tracking performance of closed-loop control systems is shown in Fig-
ure 4.2 and Figure 4.3. In addition, the reference and actual trajectories in the planar
space are shown in Figure 4.4. In the presence of disturbances, the performance of
the initial ARL controller (without disturbance observer) is significantly degraded.
With the proposed method controlled trajectory can exactly track the desired one
within a short time despite suffering from unmodeled dynamics and unknown distur-
bances. While, When it comes to tracking errors RMSE, the disturbance observer
contributes to a significant reduction of 66% (from 2.38 to 0.81).
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Figure 4.4: The trajectories of surface vessel in the planar space

Figure 4.5: The performance of disturbance observer

Figure 4.6: The convergence of NN weights of the proposed control system

From Figure 4.5, it is obvious that the observer effectively estimates the disturbances
throughout the whole process. It also shows the performance of the disturbance ob-
server during the transient procedure. All the disturbances are accurately observed
just after about 0.5 seconds which is 10 times faster than the tracking performance.
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The convergences of actor-critic weights of the improved method are shown in Fig-
ure 4.6.

4.5 Summary

Considering nonlinear systems with unknown disturbances, this work proposes a
DOB RL control approach. On-policy AC architecture is used to address the op-
timal control problem for a transformed autonomous system without disturbances
and it aims to stabilize the nonlinear plant and get the optimal value function. Addi-
tionally, a nonlinear disturbance observer is implemented in this study to attenuate
the unknown disturbances and uncertainties of the system, which improves the per-
formance of the closed-loop system. The compensation control, together with the
RL core, produces the robust optimal control input. To verify the advantages of
the proposed control structure, a comparison with the original RL-based method is
made, implementing a surface vessel system simulation.
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Chapter 5

Conclusion

5.1 Conclusion

This thesis concentrates on reproducing the accomplishment of RL techniques in
machine learning to control problems of continuous-time nonlinear systems. To
achieve optimality, ADP/RL-based designs are implemented to obtain an approxi-
mate solution to the HJB equation. By making use of the PI method together with
NN-based function approximators, the optimal policy and value function of continu-
ous nonlinear systems are learned online in real time. Moreover, dealing with system
uncertainties and unknown disturbances to achieve robust optimal performance is
an interesting concern of this work. While in Chapter 3, a novel time-varying RISE
method is used to improve the RL-based control structure for uncertain systems
with disturbances, DOBC is used in Chapter 4 to develop robust optimal controllers.
Both proposed methods are able to improve the tracking performance of the closed-
loop system as desired at the beginning of the thesis. The practical promise of
online RL techniques, where the controllers can learn the best policy by interacting
with the environment, is illustrated through Matlab simulations. This work real-
izes higher degrees of autonomy in addressing problems from a wide range of areas,
including artificial intelligence, cybernetics, operations research, economics, and so
on.

One drawback of the methods, still, is the requirement of the knowledge of drift
matrix and input gain matrix. Besides, due to the time limit, some of closed-loop
stability and optimality has not been explicitly proven yet.

5.2 Future work

This thesis contributes to confirming that RL methods can be productively applied
to feedback control. The developed techniques are relatively wide-ranging and im-
plementable, however, research in this field is still at a growing stage, and there are
a number of interesting unresolved challenges.

This result spurs further research into partially/completely model-free RL approaches
such as integral RL and off-policy with explicit optimality and stability demonstra-
tion. Furthermore, differential games and multi-agent systems are intriguing areas
in which RL research should be deeply investigated.

38



References

[1] J. Iqbal, M. Ullah, S. Khan, K. Baizid, and S. Cukovic, “Nonlinear control
systems – a brief overview of historical and recent advances,” Nonlinear Engi-
neering, vol. 6, 08 2017.

[2] K. Sachan and R. Padhi, “Output-constrained robust adaptive control for un-
certain nonlinear mimo systems with unknown control directions,” IEEE Con-
trol Systems Letters, vol. 3, no. 4, pp. 823–828, 2019.

[3] P. A. Ioannou and J. Sun, Robust Adaptive Control. USA: Prentice-Hall, Inc.,
1995.

[4] G. Bartolini, L. Fridman, A. Pisano, and E. Usai, Modern Sliding Mode Control
Theory: New Perspectives and Applications, vol. 375. Springer, 01 2008.

[5] V. Utkin, “Discussion aspects of high-order sliding mode control,” IEEE Trans-
actions on Automatic Control, vol. 61, no. 3, pp. 829–833, 2016.

[6] J. Davila, “Exact tracking using backstepping control design and high-order
sliding modes,” IEEE Transactions on Automatic Control, vol. 58, no. 8,
pp. 2077–2081, 2013.

[7] F. Mazenc and P.-A. Bliman, “Backstepping design for time-delay nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 149–
154, 2006.

[8] N. Vu, N. Tran, and N. Nguyen, “Adaptive neuro-fuzzy inference system based
path planning for excavator arm,” Journal of Robotics, vol. 2018, pp. 1–7, 12
2018.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena
Scientific, 1996.

[10] Z. Wu and T. Zhang, “Adaptive finite-time tracking control for parameterized
nonlinear systems with full state constraints,” International Journal of Adaptive
Control and Signal Processing, 06 2021.

[11] D. Nam, P. Loc, N. Huong, and T. Tan, “A finite-time sliding mode controller
design for flexible joint manipulator systems based on disturbance observer,” In-
ternational Journal of Mechanical Engineering and Robotics Research, pp. 619–
625, 01 2019.

[12] X. Luo, X. Zhang, and S. Wang, “On-line squaring of non-square hard con-
straints of input variable by coordinate alternating in model predictive con-
trol,” in Proceedings of the 10th World Congress on Intelligent Control and
Automation, pp. 2529–2536, 2012.

39



REFERENCES

[13] K. G. Vamvoudakis and F. Lewis, “Online solution of nonlinear two-player zero-
sum games using synchronous policy iteration,” in 49th IEEE Conference on
Decision and Control (CDC), pp. 3040–3047, 2010.

[14] Y. Guo, J. Zhou, and Y. Liu, “Distributed rise control for spacecraft forma-
tion reconfiguration with collision avoidance,” Journal of the Franklin Institute,
vol. 356, 05 2019.

[15] S. Han, “Non-transformed prescribing performance function and finite-time
rise-based tracking control for euler-lagrange systems,” IEEE Access, vol. 8,
pp. 136872–136883, 2020.

[16] I. Ponce Monarrez, Y. Orlov, L. Aguilar, and J. Alvarez, “Robust tracking
control of servo systems with backlash: Nonsmooth H∞ control vs. linear H∞
control,” Proceedings of the American Control Conference, vol. 2015, pp. 2051–
2056, 07 2015.

[17] Z. Chen, Y.-J. Pan, and J. Gu, “Disturbance observer based adaptive robust
control of bilateral teleoperation systems under time delays,” in 2013 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pp. 2649–
2654, 2013.

[18] E. Sariyildiz, R. Oboe, and K. Ohnishi, “Disturbance observer-based robust
control and its applications: 35th anniversary overview,” IEEE Transactions
on Industrial Electronics, vol. 67, no. 3, pp. 2042–2053, 2020.

[19] P. J. Werbos, “Building and understanding adaptive systems: A statisti-
cal/numerical approach to factory automation and brain research,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 17, no. 1, pp. 7–20, 1987.

[20] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons,
2012.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction. The
MIT Press, 2018.

[22] R. Kamalapurkar, P. Walters, J. Rosenfeld, and W. Dixon, Reinforcement
Learning for Optimal Feedback Control: A Lyapunov-Based Approach. Springer
Publishing Company, Incorporated, 1st ed., 2018.

[23] L. Baird, “Reinforcement learning in continuous time: advantage updating,”
in Proceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94), vol. 4, pp. 2448–2453, 1994.

[24] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3, pp. 279–292, 1992.

[25] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic pro-
gramming for feedback control,” IEEE Circuits and Systems Magazine, vol. 9,
no. 3, pp. 32–50, 2009.

[26] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of unknown
nonaffine nonlinear discrete-time systems based on adaptive dynamic program-
ming,” Automatica, vol. 48, no. 8, pp. 1825–1832, 2012.

40



REFERENCES

[27] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem,” Automatica, vol. 46,
no. 5, pp. 878–888, 2010.

[28] J. Y. Lee, J. B. Park, and Y. H. Choi, “Integral reinforcement learning for
continuous-time input-affine nonlinear systems with simultaneous invariant ex-
plorations,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 5, pp. 916–932, 2015.

[29] X. Yang, H. He, D. Liu, and Y. Zhu, “Adaptive dynamic programming for
robust neural control of unknown continuous-time nonlinear systems,” IET
Control Theory & Applications, vol. 11, 05 2017.

[30] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis, F. L. Lewis,
and W. E. Dixon, “A novel actor-critic-identifier architecture for approximate
optimal control of uncertain nonlinear systems,” Automatica, vol. 49, no. 1,
p. 82–92, 2013.

[31] J. Na, Y. Lv, K. Zhang, and J. Zhao, “Adaptive identifier-critic-based optimal
tracking control for nonlinear systems with experimental validation,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–14, 2020.

[32] W. Bai, Q. Zhou, T. Li, and H. Li, “Adaptive reinforcement learning neural
network control for uncertain nonlinear system with input saturation,” IEEE
Transactions on Cybernetics, vol. 50, no. 8, pp. 3433–3443, 2020.

[33] R. M. Kretchmar, P. Young, C. Anderson, D. Hittle, M. Anderson, and C. C.
Delnero, “Robust reinforcement learning control with static and dynamic stabil-
ity,” International Journal of Robust and Nonlinear Control, vol. 11, pp. 1469–
1500, 2001.

[34] P. N. Dao, P. T. Loc, and T. Q. Huy, “Sliding variable-based online adaptive
reinforcement learning of uncertain/disturbed nonlinear mechanical systems,”
Journal of Control, Automation and Electrical Systems, vol. 32, pp. 281–290,
2021.

[35] Y. Jiang and Z.-P. Jiang, Robust Adaptive Dynamic Programming. Wiley-IEEE
Press, 1st ed., 2017.

[36] B. Xian, D. Dawson, M. de Queiroz, and J. Chen, “A continuous asymptotic
tracking control strategy for uncertain nonlinear systems,” IEEE Transactions
on Automatic Control, vol. 49, no. 7, pp. 1206–1211, 2004.

[37] H. Saied, A. Chemori, M. Bouri, M. el Rafei, F. Clovis, and F. Pierrot, “A
new time-varying feedback rise control for 2nd-order nonlinear mimo systems:
Theory and experiments,” International Journal of Control, 12 2019.

[38] W.-H. Chen, “Disturbance observer based control for nonlinear systems,”
IEEE/ASME Transactions on Mechatronics, vol. 9, no. 4, pp. 706–710, 2004.

[39] J. Yang, W.-H. Chen, and S. Li, “Non-linear disturbance observer-based ro-
bust control for systems with mismatched disturbances/uncertainties,” Control
Theory & Applications, IET, vol. 5, pp. 2053–2062, 12 2011.

41



REFERENCES

[40] Y. Guo, B. Huang, A. Li, and C. Wang, “Integral sliding mode control for
euler-lagrange systems with input saturation,” International Journal of Robust
and Nonlinear Control, vol. 29, 12 2018.

[41] K. G. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online adaptive learning of
optimal control solutions using integral reinforcement learning,” in 2011 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), pp. 250–257, 2011.

[42] N. Wang, S. Lv, M. J. Er, and W.-H. Chen, “Fast and accurate trajectory
tracking control of an autonomous surface vehicle with unmodeled dynamics
and disturbances,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 3,
pp. 230–243, 2016.

[43] Y. Kim, F. Lewis, and D. Dawson, “Intelligent optimal control of robotic ma-
nipulators using neural networks,” Automatica, vol. 36, pp. 1355–1364, 09 2000.

[44] R. Song and F. L. Lewis, “Robust optimal control for a class of nonlinear
systems with unknown disturbances based on disturbance observer and policy
iteration,” Neurocomputing, vol. 390, pp. 185–195, 2020.

42


	Acknowledgment
	Abstract
	Our Related Papers
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	Introduction
	Background and motivation
	Objectives and methodology
	Contributions
	Thesis structure

	Literature Review
	Reinforcement learning
	Reinforcement learning methods
	Actor-critic architecture
	Infinite horizon optimal control
	Reinforcement learning and adaptive optimal control

	Disturbance attenuation in control systems
	RISE control for nonlinear systems
	Disturbance observer-based control for nonlinear systems


	Time-Varying RISE-Based Reinforcement Learning Control of Nonlinear Systems
	Problem formulation
	Adaptive reinforcement learning of nonlinear systems based on time-varying RISE
	On-policy actor-critic architecture-based algorithm
	Time-varying RISE-based optimal control

	Simulation results
	Simulation setup
	Result analysis

	Summary

	Disturbance Observer-Based Reinforcement Learning Control of Nonlinear Systems
	Problem formulation
	Kinematic and feed-forward control structure
	Adaptive reinforcement learning of nonlinear systems based on disturbance observer
	On-policy actor-critic architecture-based algorithm
	Disturbance observer-based robust optimal control

	Simulation results
	Simulation setup
	Result analysis

	Summary

	Conclusion
	Conclusion
	Future work

	References

