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Tracking control

• Nonlinear systems with disturbances and
uncertainties

• Robust adaptive approach

• Traditional optimal approach

Reinforcement learning (RL)

• Multi-purpose

• Multi-component

Objectives

• Deal with disturbances/uncertainties

• Improve tracking performance

• Adaptive optimal solution

⇒ Propose two control structures

Figure 1: Tracking control
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Time-Varying RISE and ARL Control Structure for Nonlinear Systems

• Combination of time-varying RISE1 and ARL control structure for

• Robot manipulator: second-order CT nonlinear MIMO systems

• Sliding variable to achieve reduced-order system

• Transformed to autonomous affine system

• Comparison with RISE+ARL structure in [1]:

– Clear exploration signal and initial conditions
– Time-varying RISE implementation leads to better weight convergences

1Robust integral of the sign of the error
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Disturbance Observer and ARL Control Structure for Nonlinear Systems

• Combination of disturbance observer, ARL-based control,

• Kinematic and feed-forward control structure for

• 3-DOF Surface vessel system: second-order CT nonlinear MIMO systems

• Transformed to autonomous affine system

• Comparison with previous works:

– Simpler computation over [2] and [3]
– Better tracking performance over [4]
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Model of Robot Manipulator

The dynamic model of an n-link arm [1]:

M(η)η̈ + C(η, η̇)η̇ +G(η) + F (η̇) + d(t) = τ (1)

η(t) joint variables
M(η) inertia matrix
C(η, η̇) Coriolis/centripetal matrix

G(η), F (η̇) gravity forces and friction
d(t) disturbance vector
τ control input

with several properties and necessary assumptions.
Figure 2: Illustration of a manipulator
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Control Objective

Design a control structure for nonlinear system (1) in order to

• Track reference trajectory ηref under disturbances d

⇒ Time-varying RISE

• Minimize a predefined cost function J(·)

⇒ On-policy AC
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Control Design

Firstly, with the joint error e1(t) = ηref − η, α1 ∈ Rn×n > 0, define a sliding variable

s(t) = ė1 + α1e1 (2)

Substitute into (1), the dynamics of s(t) is obtained

Mṡ = −Cs− τ + f + d (3)

where f = M(η̈ref + α1ė1) + C(η̇ref + α1e1) +G+ F
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Control Design

With the system described in (3), design the control input

τ = f + d− u = ε− u (4)

ε – time-varying RISE estimation u(X) – On-policy AC-based control

The dynamics of x = [eT1 , s
T ]
T
is

ẋ =

[
−α1e1 + s

−M(ηref − e1)−1C(ηref − e1, η̇ref + α1e1 − s)s

]
+

[
0n×n
M−1

]
u (5)
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Control Design

To obtain autonomous affine system, assume that η̇ref (t) = fref (ηref ), then

Ẋ = A(X) +B(X)u (6)

with X = [xT , ηTref , η̇
T
ref ]

T
and the matrices:

A(X) =


−α1e1 + s

−M(·)−1C(·)s
fref (ηref )

ḟref (ηref )

 , B(X) =

 0
M−1

0

 (7)
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On-Policy Actor-Critic Architecture

The infinite horizon cost function to be minimized:

J =

∞∫
0

(
1

2
XTQTX +

1

2
uTRu)dt (8)

Hard-to-solve HJB equation with the optimal value function V ∗(X) and the optimal
feedback controller u∗(X) → approximated using a NN

V ∗(X) = W Tψ(X) + εv(X), (9)

u∗(X) = −1

2
R−1BT (X)

(( ∂ψ
∂X

)T
W +

(∂εv(X)

∂X

)T)
(10)
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On-Policy Actor-Critic Architecture

Using two separate NNs for easier weight update and stability analysis [5]

V̂ (X) = Ŵ T
c ψ(X), û(X) = −1

2
R−1BT (X)

( ∂ψ
∂X

)T
Ŵa (11)

Actor and critic approximators are tuned simultaneously to minimize Bellman error δhjb.
The least-squares update of critic weights is

˙̂
Wc = −kcλ

σ

1 + υσTλσ
δhjb, λ̇ = −kcλ

λσT

1 + υσTψσ
λ (12)

The actor adaptation law is based on gradient descent method

˙̂
Wa = − ka1√

1 + σTσ

∂ψ

∂X
BR−1BT ∂ψ

T

∂X

(
Ŵa − Ŵc

)
δhjb − ka2

(
Ŵa − Ŵc

)
(13)
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Time-Varying RISE-Based Robust Optimal Control

ε is the estimation of f + d, based on the time-varying RISE [6].

ε(t) = (Ks(·) + 1)s(t)− (Ks(t0) + 1)s(0) + ρ(t) (14)

ρ̇ = (ks0 + 1)α(·)s(t) + β sgn(s(t)) (15)

with Ks(·) and α(·) are two nonlinear feedback functions designed as

Ks(·) ≡ Ks(s, γ1, δ1) =

{
ks0|s|γ1−1, |s| > δ1

ks0δ1
γ1−1, |s| ≤ δ1

(16)

α(·) ≡ α(s, γ2, δ2) =

{
α0|∫ s|γ2−1, |∫ s| > δ2

α0δ2
γ2−1, |∫ s| ≤ δ2

(17)

where ks0, α0, γ1, δ1, γ2, δ2 are positive parameters which need designing carefully.
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Time-Varying RISE-Based Robust Optimal Control

Figure 3: Functions of the control gains with respect to their arguments
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Simulation Results

⇒

⇒
Figure 4: Tracking errors and estimation of the two controllers

• RMSE: 0.2073 and 0.2072

• Control reduces 0.52%

• Similar estimation
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Simulation Results

⇒

⇒
Figure 5: Weight convergences

• Both show great convergences

• Convergence error reduces
41.63%

• Faster and smoother
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Model of Surface Vessel

η = [x, y, ψ]T denotes the 3-DOF position
ν = [u, v, r]T denotes the corresponding velocities
The model of SV system [7]:{

η̇ = R(η)ν(t)

Mν̇ = τ + ∆(η, ν)− f(η, ν)
(18)

with dynamics f(η, ν) is modeled by

f(η, ν) = C(ν)ν +D(ν)ν + g(η, ν) (19) Figure 6: Earth-fixed and body-fixed
coordinate frames of an SV
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Control Objective

Design a control structure for nonlinear system (18) in order to

• Track reference trajectory ηd

⇒ Kinematic and feed-forward control

• Robust with disturbances ∆

⇒ Disturbance observer

• Minimize a predefined cost function J(·)

⇒ On-policy AC
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Kinematic and Feed-Forward Control Structure

With the trajectory tracking error eη = η − ηd, design the kinematic control law

νd = R−1(η)(η̇d − βηeη) (20)

With the body-fixed velocity error: eν = ν − νd, a feed-forward term τff is added

τ = u+ τff , τff = Mν̇d + f(ηd, νd) (21)

Let X = [eTν eTη ηTd ]
T
is an augmented state for the dynamic subsystem of SV.

The autonomous system can be represented concisely as

Ẋ = F (X) +Gu(X)u+Gd(X)∆ (22)
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Ẋ = F (X) +Gu(X)u+Gd(X)∆ (22)



Disturbance Observer and ARL Control Structure 19/27

Kinematic and Feed-Forward Control Structure

With the trajectory tracking error eη = η − ηd, design the kinematic control law

νd = R−1(η)(η̇d − βηeη) (20)

With the body-fixed velocity error: eν = ν − νd, a feed-forward term τff is added

τ = u+ τff , τff = Mν̇d + f(ηd, νd) (21)

Let X = [eTν eTη ηTd ]
T
is an augmented state for the dynamic subsystem of SV.

The autonomous system can be represented concisely as
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Kinematic and Feed-Forward Control Structure

The control input is designed as

u = d(X)∆̂ + ur(X) (23)

d(X)∆̂ – disturbance compensator ur(X) – RL-based control for nominal system

According to [8], with ∆̇ ' 0, a disturbance observer is constructed{
∆̂ = y + P (X)

ẏ = −∂P (X)
∂X (Gu(X)u+Gd(X)y +Gd(X)P (X) + F (X))

(24)

If ∂P (X)
∂X Gd(X) is positive definite, ∆̃ is exponentially stable, as t→∞.

The disturbance compensation gain is

d(X) = −G+
uGd (25)
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Simulation Results

⇒

⇒
Figure 7: Tracking errors and trajectories of the two controllers

• RMSE reduces 66%
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Simulation Results

Figure 8: Estimation error and weight convergence

• Fast and precise estimation

• AC convergence
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Conclusion

Two problems are accomplished satisfying:

X Great trajectory tracking performance

X Robustness to disturbance

X Minimization of predefined cost function

Successful implementation of frameworks:

X System modeling

X On-policy actor-critic architecture (ARL/ADP)

X Sliding variable, kinematic and feed-forward control

X Time-varying RISE, and disturbance observer...

Limitations:

• Requirement of drift matrix and input gain matrix

• Lack of some explicit proof of stability and optimality
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Future Work

• A number of intriguing unresolved challenges

• Partially/completely model-free RL approaches

• Explicit optimality and stability demonstration

• Differential games and multi-agent systems

Figure 9: RL of multi-agent system
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